e &

,,,M,‘.\k‘
i :1%‘[{! £

. S
L AR R
iy ik Xk ms&u.«&if&i@:y@&g’ﬂ‘:ﬂ;ﬁ o
‘ Al EY - PO L Y

=

~an

oot Lo

: B
1 I
\
1 IR P2 VR WY N Y 7> WO g 2

LABORATORY FOR
COMPUTER SCIENCE

[INSTITUTE OF
TECHNOLOGY

{formerly Project MAC)

ff

ADAQ 47026

<
(.cm‘,m:ggs‘ D T w3 o

kv n - S &

QNP

=
S

@%IT/LCS‘/’I;R-;SG
77) 2
@ Jop 7

A STRUCTURE MEMORY
FOR
DATA FLOW C(COMPUTERS

\

=
/@:{
| gilliam 2 éckerman

a’?é!’p L—

This research was supported by the

Advanced Research Projects Agency of

the Department of Defense and was monitered
by the Office of Naval Kesearch under

Contragi-Nof NA#F14-75-C661 'i

/DISTRIBUTION STATEMENT &
Approved fer public teleasas;

B0 FILE COPY

Distdbution Unlimited /y ;
AEMGLESY Wil WIS, ¥ *

Al H(H\()l()(Y SOUARE . CAMBIGHDGE MASSACHUSETES 62139

T

2

IR

- g “"ff‘l'ff’:?

o
e
TR

o

asynchronous digital systems data structures
packet communication memory
\ data flor' crmputers cache memory

AR TGRSR
v

CECURITY CLASSIFICATION OF THIS PAGR (#hen Data Entered)

MIT/LCS/TR-186 -

REPORT DOCUMENTATION PAGE T sermipmetRUCTIONS ™|
TR][Emmw T RECIPIENT'S CATALOG NUMBER ‘

4. TITLE (and Sudtitle) S. TYPE OF REPORT & PERIOD COVERED

S.M, Thesis, August 1977
A Structure Memory for Data Flow Computers

§. PERFORMING ORG. REPORT NUMBER

L MIT[LCS"TR~186
. AUTHON(S) . CONTRACT OR GRANT nuiy""a(.)

W. B. Ackermen , N00014-~75-C-0661

Y TR SN SRS T ISR R X ANE XCERET
MIT/Laooratory. for Computer Science v AREA & WoRK
545 Technology Square
Cambridge, Ma 02139

IT NUMBERS

18- “PROGRAM EL!IJ&NT. PROJECT, TASK

1", xgnrnou&na OFFICE uﬁn;;n;: ADDR!ZS
vanced Researc ojects Agency :
Department of Defense ______§_e_2£ember 1977

12, REPORT DATE

1200 wilson Boulevard e "”““1"2%"“5
‘ mmm—f-omr fom Confrolling Office) | 18. SECURITY

. 15, SECURITY CLASS. (of thie report)
Office of Naval Research

Unclassified
Department of the Navy ne ¢
Information Systems Program LD ggE \3$IZICATION/DOWNGRADING

LA
Arlington, Virginia 22217 nEo
ALy (o ® Report)

Approved for public release; distribution unlimited D D C
e
e RN gt

mmpm (of the abstiract entered in Block 20, i1 dilfesent from Report) “ j ™ ;“0\’ 23 \911
o e
-

=

10. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and ldentify by dlock number)

N

20 STRACT (Continue on reverse side if necoseary end Identlly by bluock number)

A data flow computer is one which achieves enormous concurrency of instruc-
tion execution through a machine architecture that acts directly on a data de-
pendency graph of the program. To handle arrays and data structures effectively
a data flow computer must have access to a memory system which can handle large
numbers of concurrent transactions. This thesis presents a design for such a
memory. A “cache™Techanism is presented for improving the performance of the

W

system, and a mechanism fs given for using sequential-access devices such as .-

DD "S5, 1473 eoimion oF 1 nOV 6318 OBSOLETE

K/R NAN5. N1 a. 48N

o

p®

e S et e

|

SECURITY CLAISIFICATION OF TH'S PAGE(When Data Entered)
\\ 20.
-y

shift registers as th

:’pﬂ

" "packet communicatio

n

concept,

cate only through the transmissi

H

mory medium, The memory system design uses the

in which the compopents of the system communi-
on-of fixed size ;packetm“a.

~

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entervd)

IO oy .

e
i
L

3
Z{g
4

S o b A s Sl R S P

S ot ¢ Bacea

?(?fg}ﬂ‘}’«‘w:“{ RGN SO e S

MIT/LCS/TR~186

A STRUCTURE MEMORY FOR DATA FLOW COMPUTERS

VILLIAM B. ACKERMAN

August 1977

. e Saction
B fi Section &

Massachusetts Institute of Technology

Laboratory for Computer Science

(formerly Proiect MAC)

Cambdridge Massachusetts 62138

¥ T S A WL 2N

N B e e o B D et op e Y

i S

¥
RO Y

2

"A STRUCTURE MEMORY FOR DATA FLOW COMPUTERS

by
William B. Ackerinen
Submitted to the Department of Electrical Engineering and Computer Sciente on Ausust 26,
1977 in partial fuifilimsnt of the requirements for the degree of Mester of Science.

ABSTRACT

A data flow computer is one which achieves enormous concurrency of
instruction execution through » machine architecture that acts directly on a dats dependency
graph of’tho program. To handie arrays and data structures effectively, & data flow computer
must have access to a memory systsm which can handle large numbers of concurrent
transactions. This thesis presents a design for such a memory. A “cache® mechanism is
presented for imiroving the performance of the system, and & mechanism is given for ucing
sequantial-access devices such as shift registors as the memory medium. The memory system
design uses the "packet communication® concapt, in which the components of the system
communicate only through thé transmission of fixed size "packets” of dats.

THESIS SUPERVISOR: Jack B. Dennis
TITLE: Professor of Computer Sclence and Engineering

1:&’?3‘?&’5%&»

NI
R AL

v s .
T L Sy *
30 3y Lk e,

BNt AT T T IR

- g ST -
e 8y B L AT

v @v PR R FURY
RGN REREE A AR Loy

R

e

3
ACKNOWLEDGMENTS

I wish to thank Professor Jack Dennis for his encouragement and suppcrt
through this research and for providing an intellsctually stimulating environment in the
Computation Structures Group. 1 would like to thank Glen Miranker and Lynn Muntz for their
hoipfu! comments on parts of this thesis. The Laboratory iuv Computor Scisnce provided
facilitios for the proparation of this thesis.

This rescarch was supporied by tha Advanced Resgarch Prolscts Agency of the Dspartmeant
of Defense and was moritored by the Office of Neval Resaurch under contract no. NOOO14-
75-C-0661.

PULVEURVINT II70T AT R IRV

DEN A

(ST U SLIE L

i

g e P R Y

v

e s .wamﬁ‘t,?g’{*j;?

Ay

4
TABLE OF CONTENTS
Title pege
Abstract
Acknowledgments

Table of Contents

0.0
19
1.1
1.2
20
2.1
22
23
3.0
3.1
3.2
a0
50
6.0
7.0

Introduction

Data Flow Computers

Data Structuies

The Structure Controller

Specifications of Packet Systems
Nondeterminacy

Packet Acknowledgments and Safety

Latency, Arbitrators, Distributars, and Allocatocs
The Basic Memory Module

Horizontal Interconnections of "MM" Systems
Vertical Composition and the Cache Module
Implementation of MM Using a "Rotating” Device
Structure Controller Dssign Considerations

The Deadicck Problem

Suggestions for Further Resaarch

References

Appendix |

Appendix 11
Anpendiv {1}

D W N e

12
17
24
33

51
g9
56
70

95
104
108

109
111
114
121

corspe Wt @4{@;,:;‘;34‘:.@@
L

0.0 INTRODUCTION

A dats flow computer is a machine with architecture radically different from
that of existing computers. It can perform computations simultaneously on many different
parts of a program. A typical data flow computer has many arithmatic processors, anc! can

utilize all of them simuitaneously, each executing a different instruction.

To handle arrays and cther data structures, a data flow computsr mus! have a
data structure processing facility and memory that has a similar facility to perform many

operations concurrently. Such a date structure memory is the subjact of this thesis.

A data flow computer owe: its great speed to its ability to perform many
operastions at once, svan though each individual operation is no faster than on convantional
computer. The same is true of the memory. The memory to be presented here has a
retrieval delay just as grest as conventional memories, since nc new circuit lechnology will be
proposed. However, it has an enormous data transfer rate because of its ability ic Fandle
concurrent transactions. This concurrency is mede possible by an unusual type of interface

cellocl packet communication,

Section 1 of this thesis is an cverview of data flow computers and the type of
memory that suzn a computer requires for structure processing. Secticn 2 is a treatment of
packat communication systems, showing now their behavicr is defined. In section 3 the hasic
memory unit is described, along with a "cache”™ mechanism and an “interleaving” method to
improve its performance. In section 4 an implementation of the memory using shift registers
or magnetic cisks will he given, showing how the disadvantages of such devices can be
overcoms through the usa of pacxet communication, Saction 5 examines some aspects of the
processing unit the! uses the memory, and seclion 6 sxamines the “deadlock” problem and the

cost of overcoming it. Swection 7 presente suggastions for fuiure research.

Rl o) T 0 Peerteeprinritse 1 it metipm Tl RN bt

1.0 DATA FLOW COMPUTERS

As the need increases for evar faster compulers, one technique for improving
performance that has drawn considerable interest in the last few years is a radicaliy new

design known as a data flow computer [6] (7] [11] [i5]. A conventional computer has only

one locus of control, that is, one point in the program ar any given instant at which
instructions are executed. Ability to sxscute more than one insiruction al . time can improve
performance significantly, and some computers use an instruction lookahead to achieve this [3]
{97. However, the benefits of lookahead methods are limited, and such computers are
enormously complex. Other attempts to increase instruction concurrency include "array

processors” [i6] , but such machines are inflexible and extremely difficult to program.

A data flow computar achieves exacutional concurrency by using s different
internal representation of the source program. Instead of representing the program as s list
of instructions to be executed in a particular order, the program is represented as a data flow
schema, A data flow schema is a directed graph whose nodes represent instructions and
whose arces show the data dependence among instructions. The order of instruction execution
is determinad solely by the data dependence - an instruction is executed when all of its deta
sources have produced results and all of its destinations are ready to receive data. This

allows many incti uctions throughout the program o be executed simultanecusly.

The data ir. a data flow progrem can be modeled by “tokens” that reside on the
arcs of the graph, Each arc may contain at most one token. The execution rule for most

instructions is as follows:

An instruction {other than a merge or gate) is raady tor execution whenevar all
of its input arcs contain tokens and all of its outpu! arcs ara emply. When an
vastruction 15 executed, the tokens on the mpct arcs are absorbed. The
function denoted by the instruction 1s computed, using the velues in tne
absorbed tokens as mnpu!l data A loken containing the function value 1s placed

or ga boalpal aic

s At MBS s e e Aman moewe =l

There are a number of ways of landling decisions and iteration control.
Perhaps the simplest is the use of special instructions M, T, and F. These recsive a boolean
value on one input (the "control” input) and use it to contrc! the passage of data from another
input. Their execution rules are ss follows:

The M (merge) has e control input and two data inputs labelled "T" and “F". To
be ready for exscution, there must be a boolean token on the arc leading to its
control input. Furthermore, the arc Isading to whichever of its T or F input
matches that boolean token must have a token, and all output arcs must be
empty. When it is executed, the control token and the dats ‘oken at the input
indicated by the control token are absorbad. Copies of the token af the
selected data input are placed on each output arc. Input tokens are not
required at the non-selectad data input, and if any are present they are not
sbsorbed.

The T (true gste) and F (false gate) instructions have a control input and a data
input. They are ready for execution whenever both input arcs contain tokens
and ail output arcs aro empty. When they are executed, the inputs are
absorbed. [f the control input matches tr» name of the instruction, copies of
the dela input are placed on tho outpin « .s. If not, no tokens are plsced on
the output arcs.

Constants can be gensrated through the use af functions of no arguments. An
instruction to perform such a function has no input arcs, so, in accord~nce with the execution

ruls, it places tokens on its outpit arc as fast as thay are removed.

R P T e LI T . - P2) YIRS ctrmrne B a o e e

!

3,
il

A e W i R L £

Here is un example of a deta flow schema te compute thas factorial (usiction:

wut

Boolean inpute to M, T, and F instructions are drawn as open srrows. Tokens existing in the

initial configuration of the program cru drawn as filled-in circles.

The hunevior of a data flow schema under tho execution rules has a very
important prope:ty - it is determinata. This means that the output of the program is
determined orly by the input, and is inderendent of the timing of instruction executions. All

runs of such a program with the same data will yleld the same resuits. Determinacy follows
from the facts that

(1) Each instruction produces a result whirh is a function unly of the values of

Its input tokans, that is, aach node of the schema is determinate.

(2) Tha valus of s token doss not change in sny way while It resides on an arc.

(3) The execution rulas, and fact (2) above, quality the schema as a valid

intarconnaction of autonomous communicating systems.

I ot S~ A

i

°

It is an established result that such an interconnection of determinate systems is determinate

[1](14).
1.0.1 DATA FLOW COMPUTER ARCHITECTURE

The memory systsm and structure processor that are the subject of this thesis

are intended to be part of a computer of the type described by Dennis and Misunas 5] {7] .

Such a computer is composed of units which use packat communication [8] for transfer of
data. The only means of data transmission among thass units is the transmission of fixed size

messages cslled puckets, There is no clock or synchroniz ¢ information.

The four main pacts of the dsta flow computer sre the instruction memary,

arbitration network, functional units, ad distribution network. For structure processing, the

structure controller and structure memory ars added.

distribution arbitration
network network

instruction

" y8mory

functional /
3

units

—~——

~_ structure

controlier

structure

memcry

To sxacute a date tlow program, Hs schama 15 encoduss info the instruchion
memry tack cel wif the memey codans vre - sbiuclun of e slems s the Limeg the

A I E T S e I T T B R e T SIS R e e g

ARG NS S

s

pige

10

structure operation, etc.) and the address of its destinations. The latter are the celis to
which outgoing arcs voint. The instruction cells also have receiver regisiers to centain
incoming “iokens”. When all nscessary receiver registars bacome full, an instruction cell emits
an operation packet, consisting of its aperation code, the data from the receiver registers, and
tho destination addresses.

Any given program has a grest riuinber of instruction cells, each sending
operation packels only cccasionally. These streams of packets are merged by the arbitration
network into 8 small number of densu streams. The packets coming cut of the arbitration
network are sorted according to operation code and sent te the appropriate functional units.

In the cese of structure processing instructions, they are sent to the structure controller.

The functional units or structure controlier perform the indicated operation and form, for each
destination, a result packet consisting of the destination address and a copy of the actual
result. The result packsts go to the distribution network, where they are sortad by address

and sent to the appropriate receiver register of the appropriste instruction cell. (The
dastination address includes the receiver number.) If the instruction is a structure operation,

the struciure controller may send numerous command packets to the memory snd receive

result packets back during the course of its computation.

The preceding description doss not quite implement the exacution rule: An
instruction cell should wait until its "output arcs”®, that is, the recaivers of its destinatiors, are
empty before issuing an operation packel. There is no way for an instruction cell to "see” its
destinations’ recnivers. The problem s remedied by using, where neccssary. acknowledgment
tokens sent from & cell's destinations to the cell itself. The acknowiedges are treated like
invisible arguments, except that they conlain no data. When a cell i, executed, it may send
result packe's to soms destinations and acknowiedges to others. A cell is rot ready to be
executad until 1t has received all necessary real arguments and all necessary acknowledges.
Acknowladges are plsced in the program whare necessary 1o ensure thal, when a cell has
recevar el srgunents and achrowledges, its desliralions’ recan e raynters w.il be emply.
These stknowledges snodld nut be confused with the nacket acisdwisdyss to be dersivped

tater

A
|
1

g m-,‘w'\ L R T

Cin 1T

TR T IERERL TR
o
ik Sk A

St et
R

i1

A constant need not be implemented as a separate node of the data flow
schoma. It cen simply be loaded into the receiver register of the instruction cail that uses it,

and marked in such a way that the instruction cell knows that that register is always full.

An additional part of the data flow computer, not shown in the preceding
diagram, is the host computer. This is a computer of conventional design, which has access to
the memory units and control functions of the data flow computer. It is used for diagnostic
testing and for initial loading of the instruction memory snd structure memory. it does not
participate in the actual data flow computation.

12

1.1 DATA STRUCTURES

In order to handle arrays snd date structures in a data flow computer, it is in
most ceses recessary !0 aliow single tokens to have entire structures as their values. (Some
programs which use arrays of fixed size, such as Fourier transforms and other signal
processing sigorithms, can make do with arrays of instructions with one token on each arc.
However, this approach is impractical for very large arrays or for dynamic structures.) For

this rasson. wa propoza s data structurs tacility that zilows tokans to have structure values.

The simpiesi iype of siruciure inai permiis fuii generality is the binary tree, which is
recursivaly defined: & binsry tres is an slementary “objsct" from some set, or is &
concatanation of two binary trees. Such trees form the basis for the programming langusge
LISP. [4] [13] For definiteness, the structures used in a data ficw computer will be sssumed
to be binary trees.

The "elementary objects” are all date values other than structures that the
computer can handle, plus the special object nil. Elementary objects thus might irclude

2ol g o M P | a ===ba A
integers, boolean vaiues, ro@s, oil.

The principal operation on a data structure is selection. A simple selection

takes a structure and a single bit. If the structure is elementary and not nil, the resuit of the
selection is undefined. 1f the structure is nil, the result is nil. Otherwise, the structure is the
concatenation of two structures, and the result of the selection is tha first or sscond of these

it the bit is zero or one respectively. A compound sslection takes a structure anu & string of

bits, and gives the result ot applying simple selections repestedly, using the biis in sequence.

AN K

3 LASCETIK

ey
RN

bl gl Sl C e et

RGN 228
DTS N GERY

S5

R

S

' R P
R A s oo

s
3
LB

B e
YT e e

ey

‘o
Y
r 4

”
IS

13

1 4 nl 314

SELECTS, ‘1'] »5 (a simple selection)

SELECT[S, 001°] = SELECT[SELECT[SELECT(S, 0’} ‘0'} 1’J = 4 (a compound selection)

The true "meaning” or "value” of a structure can be defined to b2 the set of

orderel pairs of salactors that yleld elementary values other than nil, along with those values.

Thus the structure S denotes the set

{ <000, 1>, <001', 4>, <'011%, 3.1&>, <'1°, 5> }

Nil simply denotes a substructure with no elementary items at all.

Using this definition of the meaning of a structure, there is a structure
corresponding to any finite set of ordered pairs of selectors und elementary values (excluding
nil) such that no selector in the set is an initial substring of anothar. The structure nil

donctes the empty set.

SELECT{struc, sel] =

The elementary value v if struc contains the pair <sel, v>
Undefined if <s, v> € struc whers s is a propur initial substring of sel

The structure { <s, v> | <salss, v> € struc } otherwise

{

s ¥4

R R O A e o By o SO g e LTSN

SR T R AR SO W e S R S Eon T SN s L SR Lot A = Amre nen AL e e SRS A b S S
2
J 3
151
-
14
5

B2

Structures can be built with the append operation. APPEND piaces a given objact (structure

%} or slementary value) ointo a given structure with a given sslector, removing whatever
substructure previously existed there. In the set-theoratic model,

&

’%3 APPEND{struc, new-va;, sal] =

§

¢

((struc - { <s, v> | one of sel or s is an initial substring of the other}) U { <sel, new-val> }
if new-val is slementary.

P T

(struc - { <s, v> | one of se! ar s Is an initial substring of the other}) U

{ <sales, v> | <s, v> € new-val} if new-val is a structure, including nil.

Letting S be the structurc defined previousiy, APPEND(S, 7, '01') is

The substructure containing nil end 3.14 disappears.

1.1.1 REPRESENTATION IN MEMORY

Structure cun Lo impiemented on a dais flow computer in the same way that

they airc commonly implemented on ordinary computers - as limed lists of "ceils” in a memory.

An elemantary ou,2rt is ropresented by the object itsed. A concatenation is represented by
the address in memory ot » sl containing the representations of the two substructures. In
oithsr cuse, a structurs is reprasynten v a s.adll amount of information. The huge amount of
informativn that constituies the shiucture itself . insids the xamory, and the reprassntation

is merely s powter to this. Tne operation of sslecticn s _:dte simpte. Cellz are read from

&
§

=3
.~ ————— A——am—& amarm ot]
FERCA SV R S

e A i e e e

e .

[VIR R

15

memory and the appropriate halves of the data used, under control of the selection bits.

1.1.2 SHARING

Such an implemantation ieads to the possibility of a single structure in memory
being shared (or partly shared) by several parts of the computation. In a data flow computer,
two tokens might have the same pointer as their value. This is of course very desirabie for
economical memory use, but it makes the APPEND operation difficult. The problem is that
modification of pointers inside the memory can change the value of structures other than the
intended one, if structures have parts in common. In many programming languages, this is
considered a reasonable and even desirable effect. For example, the LISP ianguage has
instructions 1o modify existing structures. In a data flow computer, however, this cannot be
permitted for reasons of determinacy. In ordar for a data flow computer to be determinate,
the meaning {in the sel-theoretic sense given previously) of a token bearing a structure value
must not change while that token resides on an arc. Since other instructions. including
APPEND's, can be executed while a token resides on an arc, APPEND must never change any

substructures that are shared with other structures.

In the proposed structure processing facility, each cell has a reference count
which makes it essy to tell what substructures sre shared. Whenever the APPEND processor
is tempted to modify a cell ihst is shared with ancther structurs, it mahes a copy of the cel!

snd modifies the copy insteed. For example, if S is a pointer to the following structure in
memory:

whare s ausbse it asch node 5 the raferencs count, APPENDYS, 7, 01 yields
’ v !

16

1 4 nl 314

The node that originally had a reference count of two may not be modified, so a copy is maJe,
and its rafarcnce count is therafore reduced to one, The structure controllar te be described

in the next section will perform these tasks.

3 2, b ¥ T X 4, o~ xapr ™ >y e s i o I, WY b g
A SRS By 2 BRI B i e TG Y NPy T P4 A
T e IRt £ By o S STE NS R L3t 2, LT 2 AT AT

P A e VMR G R R e AT re e by N3 W S M AL AR RTINS SRS S 4 a7

WM.%«%
%W) R
R e 0 et

~,%, 3

17

e

1.2 THE STRUCTURE CONTROLLER

In thic section we will outline the behavior of a processing mechanism that uses
the structure memory to provica a structure facility for the data flow computer. The basic
bshavior of the structure contrciler is that it recaives operation packats from the arbitration
network and delivers result packets o the distribution network. it holds tha state information

for structuie operaticns in progress, and performs memory operations by sending packets to
the memory ard receiving packets in return,

ol A Ty SR I

Tne purpose of this section is to show how the structure controller will use the
memory, rather than to give a detailad specification for the structure controller. Thorefore, a
number of design decisions will be made arbitrarily. For tha most part, the requirements of
the structure memory are independent of these decisions. For example, the memory design

would not change if ternary trees were used instead of binary ones.

A re st R B et ot R o« BIE

Some aspects of the design of the siructure controller will be considered in
more detail in section 5.

1.2.1 DATA FORMAT

e o el o P s~

The memory space is divided into "words® or "cells”, sach of which holds one
node of a structure. Since the momory Is used for the storage of binary trees, the words
representing nonterminal nodss contain two pointers to other nodes. Ths convention will be
made that all words of the memory will be divided into halves, called the left half and the right
half. Each half has an "elem” bit bit indicates whether it contains an elementary item {terminal
node) or a pointer to another word in the memory. If the bit is 1, the half word contains an
elemantary valus. The interpretetion of that halt word is then the exclusive responsibility ot
the rest of the computer, unless it is nil. The structure controller treats ony elementary value
other than nil simply as a collection of bits. Any type information (integer, ‘loating point

numbur, character, etc.) must be sncoded into the half word along with the data.

The structure graphically represenied as follows:

e rvm o AT A 7 T AT VSR M T T

A ey asesase NI
LA o
¥l R R, \,"é’.. Rl s R G SEL N AT gt v e v, iny s VA AL RARA S\ R AP e ATy

18

L e e i s REE SPER

C e m——— —— e

might be reslized by address 102 in tho following memory cordiguration:

location 102
[1} a0 107]

locstion 107
| 1} 5|1

M

6 |

The bit at the left and of each hall word is the "elom™ bit

(A difigrent convention could ke used, in which each alementary value takes an

entire word instead of hait @ word, The two cenventions are squslly powerful, and diifer only

slightly in gxecution. Tha "half word® conventiun will be used for definitenass.)

e 5;,,;‘("3;?.» S
CIRTY e gl ML Ty e VAT

1.2.2 MEMORY MANAGEMENT AND GARBAGE COLLECTON

N

e All words of memory that are not part of a structure are kept in a collection of
- free storage lists. (There are several such lists, rather than ons, in order to maintain a high
rate of processing. This aoin: will be discussed in section 5.05.. Whenever the structurs
b}f controllor needs a word in ordsr to create a nods, it takes it from one of the lists. Whenever
,;\; 8 node is destroyad, that is, att pointers to it disappear, the word containing it is returned to &

free siorage list.

S o U

Each node of a structure has & reference count, which is the number of

pointers tc that noue that exist, whelhar in other ncdes or in the rest of the computer. (The

iatter includes operands waiting in instruction cells and packets in transit through the
arbitration and distribution networks.) The structure controller increases or decreases the
reference count of each node as pointers to it are created and destroved. Whwin the
reference count is decreased to zoro, the node disappesrs, so it is returned to a free storage
list. Whenever this happens, any pointers that the nude contsined disappear, and so the
roferencs counts of the nodes pointed to must be decrexsed.

The choice of a reference count strategy for memory management instead of

tho "mark and scan™ method commonly used in LISP systems was made for three reasons:

(1) The mark and scan mathod requires a garbage collsction operation which
must find every reference to svery structure. Since references exist in
packets In transit, it would be necessary to stop the entire computation 2nd

wait until all packets ctop moving befora a garbage collection commanzes.

(2) The reference count is needed anyway in order o implement the copying
rule afficiently. Whenever the structure controller needs to modify a node
as part cf an APPEND operation, it may do so safely if the reference count

is one. If not, the node must be copiad.

(3) Tho objections to the refersnce count method in many list processing
systems, that it is difficult to recover circular lists, dces not apply here.

Because of the copy ruls, circulsr lists ere never created.

1.23 THe STRUCTURE OPERATIONS

The structure controller to ba proposed implements the following program level

ovwerations:

S e < s
RS

3

T e T
ey

%

- W i R
e o i 47 R RAFERTF I

?

TR N

-

REREIE. MR AT PSS At A

TTTe a4 TR

20

SELECT(structure, selactor) - The selector is a bit string of definite length. The
structure is iraced under control of the bits in the selector, starting with
the leftmost bit. A zero bit selects the left offspring and a onse hit selects
the right. The item at the selecled peint in the structure is returned,

whether it is elamentary or a substructuro,

APPEND{structurs, object, selector) - Returns a structure similar to the given
one, but having he object at the place specified by the selector. Whatevar
was at that place in the origina! structure is absent in the result. Th-
object may be elementary or a structure, Any part of the original structure
that is shared with othar parts of the computation is not modifisd. The
controller copies part or all of the original structure as necessary to be
sure that this is the case,

The structure controller recognizes the special constant nil which, while
elementary, is also the structure with no selectors. Nil is used as a terminal node of a
structure to indicate that there arc no objects beyond that point. Any part of a structure
may be deleted simply by using tha APPEND operation to replace it with nil, and a structure
mey be created by appending something to nil. It is assumed that tha constant nil is explicitly
aviilable O the programmer for these purpotes. The controller optimizes all structures,

replacing with nil any substructure all of whose terminai nodes are nil.

Thare are two more cperations performed implicitly by the controller. If any
operation returning a structure valus spacifies more than one dastination, the reference count
of the result must boe appropriately increased. Also, if any operation discards a structure
velug, the reference count must be decreasad. it follows that the conditional operstions such

8s true ard false actors must be executed by a structura controller if the objects being
switched are structures.

TN Y,
?‘!g%‘ Y A AP Ry ok o8 i S a A TR AR I ¢
“{,, e e i N e T g £ b
c e 3 2
-2 = e e w EppoL P ritaek fa o
S e g TTRETESITR YT * % =

31
(1
A my

W e

o ————
N

G

B
2

-~

FIVO SR

=

HE A

TR

" - R AT

B R PR

21

1.2.4 THE MEMORY OPERATIONS

The structure controller communicates with the memory by sending command

packets' and receiving result packets. These packets are given names describing the

opsraticn 1o be performed.

To read & word of memory, a FET ("fetch”) packet is sent, giving the address.
Ths mamory returns a LOAD packel wiih the data. Between the FET and the corresponding
LOAD, many othsr packets might be sent and received. This is a consequence of the
parallelism of the daia flow computer: just as with the other functional units, the rate at
which structure operations are performed can be increased by allowing many operations te
be in progress simultaneously. This concurrency is made possible by the use of packet
communication at the memory interface. The FET packet that begins an opersiion and the
LOAD packet that ends it are dstinct evants and might be separated by a great number of
other packet transmissions and receptions. Each LOAD packet is identified with the FET
packet that cause:’ it by means of the “tag”, to be described later.

Each LOAD packet contsins the sddress of the word and its reference count, as
well as the data. The address is probably not used by the structura controller, but is included
as part of the spacification of the memory wodule because it is needed by the cache
mechanism o be described in ssction 3.2. The structure controller uses the reference count
in order to tell when a node may be written on without heing copied (if count = 1) and when
a node should bo destroyad (if count = 0).

To increase or decrease the reference count of a word, the FiT™ or FET™
packats, respoctivaly, are sent. These are similar to FET, except that the refaerence count is
first modified. The mamory replies to them with LO2SY or LOAD™ packets which are similar to
LOAD packets. In soms cases the structure controllsr does not use the data in a LOAD™ or

LOAD™ packet, but it does not really cost anything for the memory to send it.

To write on & word of memory, the structure controiler sends an UPD

("update”) packet giving the axdrsss, data, and referance count. The reterence couni is

e e 4 T 3 2 L A 2T SR T e e

- . . S R i £t e
R P TP K Gors ooy SN S0 S50 Spmais P WL WS e R 2 e e RTINS e N SN S R TR, -

22

presumably one, but the specification of the memory module allows an arbitrary count to be

given. (In an actual implementation of a structure controller and memory, unnecessary fialds

0 5
3
&
=,
%
74
s
3
H
h
i

£
e
2 ¥
A
”

g ; { would be omitted where possible, so that the controller would 7ot send a reference count in
gf | é UPD packets or receive an address in LOAD, LOADY, or LOAD™ packets.) The memory sends no
If ; : reply to an LD packet.

IR

g ; ; There is another command that the memory recognizes. The CLR packet waits
£ e until all pending operations on the given word are complete, and then returns a DONE packet.
g 7 It is not used by the structure controller at all, but is required for operation of the cache.

£ 1.2.5 THE TAG FIELD

;

; Every FET, FET, or FET™ packet has a field called the "tag" field that
constitutes a reminder from the structure controller to itself, telling it what to do with the
%‘ " result of the operation. The tag field of & command packat is returned unchanged in the
% result packet,

Consider the case of & simple SELECT instruction. When the instruction cell
fireas, an operation pachet goes to tho structure ~ontroller containing the operation code, the
structure, the selector, and the addresses of the ths instruction cells which ara to receive the
result, There might typically be three such destination addresses, each about 20 bits long.
The structure controliar can simply make thom the tag fisld of the "fetch” commend to the

L

R, IR TR A T, T

Sy

memory, snd then use them when they come back in the result packst. in the case of more

3 complicatad sivucture operations, such as APPEND's with campound selectors, there is a large

Wt

amount of state information that must be remembered through the many memory transactions
that make up the structure operation. In addition to the destination addresses, there is the
dalum to be appended, the structure to be ultimately returned, the remaining selector bits,

and a fow pointars., The total amount of such datz typically might be 200 bits or more.
There are two ways of handling this information. One method is to include all

of it in the tag field of comisands to the mamory, s0 the structure cont oller doesn't need to

store any information about the state of ongoing structure operations. When the result

R L
T ¢

FEREY

2
%Y
2]
Y
=
U
&
g‘::
£
3
5.
o
&
e
?:.
£
g; -
2
4
|
b
i

£

e
L3
.

u ?(‘5"2;:;;& m%ﬁ e .:g,;"':‘e‘fﬁ

e e Wt < = i e

e R B

o mpen s WIS e S RS IR

B R DL I 2 A NSRS 2 I L I

28

packet comes back from the memory, the structure controller locks at the entire packet
including the tag field, decides what to do next, and produces a new packet to send back %o
the memory. This method (the "memoryless structure controlier™ method) is efficient, but it
raquires an extremely wide data path for all memory transactions, and it gives rise to very
difficult problems of avoiding dead!ocks.

A second method is to store all of the state Information in the structure
controller. This raquires that the controller have a memory with a capacity of 200 bits or
more for every structure operation that can be in progress at ons time, In this case only the
address of the block of memory in which the state information is stored must be put in the tag

field. If 256 simuitaneous structure operations are sliowed, the tag field only nseds to be 8
bits.

In »ither case, commands to the memory contain a tag field. The memory
echoes the tag bzcr o the controller in the result packet.

1.2.6 THE DATA ANO REFERENCE COUNT FIELDS

The contents of each memory word consists of a data field and a reference
count fisld. The data field is furthar divided into two pointer fields, leaf-nods indicator bits,
perk..ps a bit to indicate that the cell is on the free storage list, and perhaps type indicator
fields for siementary values. All of these are significant only to the structure controller, and
are irralsvant to the memory. The memory can simply consider the data to be a homogeneous
field. In practice, it might be about 40 to 80 bits long.

From the memcry's standpoint, the reference count is simply part of the data
associated with sach word. In some transient cases it might become negative in scine parts of
tha rmomory system, although the structure controller will niver see a negative refsrence

count. In a typical realization, the reference count field might e about 8 to i5 bits long.

Ircoming and outgeing packets that ruad or write a word of memory have data

and reference count fields that corraspond precissly e the fislds in memory.

Ve

24

2.0 SPECIFICATIONS OF PACKEY SYSTEMS

points of the design method.

TR R T R T A R e L RN E TR

TN

2.0.1 FUNCTIONAL SPECIFICATIONS

- componant of & data flow computer is replaces with one that operates at a different spsed,

the computei will continue to functior corractly.)

depend not just on individual input packets, but on the entire history of input packets. All
packets that pass through s given input or output port have a definite order among
thamselves. The ordsrad saqucnce of packets that have passed through a port from the time
that the system was siarted up until a given instant is the histery of the port at that instant.

A histo., of & port will be written by listing the packats in parentheses, separated by

semicolons,

SR S AR A enlton 8 B RN TR Wy L g P ANEE o AAIek W o M N e 4 % e L 6 e e 3 e e My B R W IR WO o e e TR L R 75 T

In this section we will develop mathods by which one may descrioe how a
hardware system using the packet communicatior: principle is constructed, how such a system
bshaves, and how 01w may prove that a system constructed in a certain way behaves in a

certain way. Examples will be given of simple systems that illustrate some of the important

Because of the restricted wa ' in which packet communication systems interact
with their environment, it is easy to describe how such a system might behave. Since the
only interaction is through packets, a system’s behavior is completely known if it is known
what packets it will transmit in responss to whatever packats are sent to it. One other piece
of information that might be available, but that wa reject, is the time when a packet iz
transmitted. It is impermissible for a system to be described as, for example, transmitting the
result of a compuiation between 1 and 1.5 microseconds after it receives the deta. The only
requirement is that it eventually produca the result. (This is not te say that speed is
unimportant. Like any other computar, a data flow computer is dzsigned with oparating speed
in mind. The conditions for correct behavior are Indzpendent of speed, however.

Since a module of a packet communication system may retain internal sfate

information (though many useful modules do rot), the "result” packets that it transmits may

R .

8 ne 4r adab e g G h ¢ W YL 4 S %
By, 45 aday? o3t o et
F

3 ‘4 B e e S L B Rt

25

There is a partial order on histories: X < Y if X is sn initial subsequence of V.
For example:

"<“;"~"~",§;; N R N 0 eI AR ST SRR

BT

{4 (1;3;89<(1,3;4;7)

&

4

i but(l; 2: 4)and (1; 3; 4)do not satisty this relation in either order.

0

EV Since histories only grow longer as time progresses and symbois already in a

- history never change, a history at a later instant is always greater than or equal to a history

at an earlisr instant.

The length of port history X is dencted |X|. The individual packets of X are
xl . Xz L] . L[] xm L]

There Iis no defined time order among packet arrivals on different ports, so it is
useless to represent them as a single sequence. Instead, a history array is used, which is a
collection of historias, one por port. The partial order on histories can be extended to arrays:
A 2 B if each history of A is greater than or equal tc the corresponding history of B. Like

histories, history arrays increase as time progresses.

The description of how a system is expected to behave is quite simple. Il is a
description, for every input history array, of what output history array the system will
eveniually produce. “Eventually” mesans in finite time for finite histories. For infinite
histories, it maans that, for any K, the first K packets will be produced in finite time. This is
bacause a system which is oxpected 1o have an infinite output history cannot ever transmit its

entirg cutpui in tinite tima,

A description of the dependence of output history arrays on input arrays is

cailed » functional specitication, i is s dascription of how a system is axpectad to behave.

The major provlems In the tald of packel communizsilon systems are proving that e system
oullt in ¢ certuin way cbeys a ceriasin functional specification, snd proving that the

Intarconnaction of systems rnown to obay cartain functional « achications obeys some other

s

e

i

YRR

¥

e v
PAING &

T T T T T TR AR

RN Y O AR NI i S0 % A F TN Ak RE n s hry R A e e ey e o . o N - s en

26

functional specification.

If, for any input array, the functional specification st:tes that there is only one
possible autput array, the system is determinate (sometimes called functional, but that term
will not be used here). In that case there is a function, say f, mapping input arrays to output
arrays, such that, if input X (and no more) is delivered to the system, f(X) will sventually be
produced. If further input is then given, the input history is Y with Y > X, and output history
f(Y) will be produced, Since the system cannot retract any of its previous cutput, f(Y) > #{(X).

From thig it is casy to see that f is monotonic in that:

X DY » f(Y) > #X)

If there is more than one legal response to a given input array, the system is
nondeterminate. In that case a function is also used to define the functional specification, but
f(X) is the set of all legal output history arrays. Functions defining the specifications of

nondeterminate systems also obey a sort of monotonicity property, which will be given later.

It is possible for an interconnection of nondeterminate systems to be
determinate. For example, a data flow computer is determinate even though its arbitration
natwork is not. An interconnection of dsterminate systems is always daterminate, and its

function can be computad explicitly from the functions of the components [1].

2.0.2 DESCRIPTIVE SPECIFICATIONS

Since a major task of the system designer is to demonstrate that a system built
in a certain way obeys certain functional specifications, it is necessary to describe in a
reasonably formal way how a system is built. A wiring diagram is ona formalism, but it is far
too rigid and implementation~dependent. A higher level method is needed. When a system is
assembled from components, all using the packet communication principle, it is of course easy
to describe the interconnaction, telling what porls of the various systems are connected to
aach other. For systems that cannct be so decomposed, the descriptive specification will be

given in terms ¢! a program written in an extremsaly informal ALGOL-like language. This

]
b

,(
B

e

. a"s

e s G S i TN S

B

TR

T

T P

PR

T R T TR
1

T e T e 3T

P

ey AR

27

language is a subset of the Architecture Description Language [10] which is under

development.

In the language we will use for giving descriptive specifications, packeis will
look like data records with a title and one or more data fields, for example: "WRITE(3, 7)".
This format is purely cosmetic. In the actual hardware implementation, a packet is nothing but
a collection of bits. The fislds are simply divisions of these bits into subsets that the sender

and receiver both agree upon. The titles are just encodings of another field.
2.0.3 AN EXAMPLE OF A DETERMINATE MEMORY

A functional and dascriptive specification of a system callad MEM will now be
given. MEM is a random access memory with an input port IN and an output port QUT. Two
types of packets may be delivered to it:

WRITE(addr, data) writes the data into the given address
READ(addr) fetches the data from the given address

The “addr” and “data” fields contain numbers that range over soma finite and fixed spacss.

There is one output packet type:

RTR(addr, data)

{RTR stands for "retrieve”)

Every READ pzcket delivered to MEM results in transmission of a RTR packst
bearing the address and the current contents of the memory. Every WRITE packet stores its

data in the memary and returns no result packet. The initial contenis of sach address of the

memory is 2ero,

For a glven Input history, the contents of the memory may be sasily
determined. Tha contents of each word is simply the data field of the last WRITE packet

having that eddress, or zero If there is no such packetl, The tunction f,.y reglized by this

TR AR RN

u.;'y;_f_‘ e

CERH

TR

14

A

N A A 4 P A P o T T S\ TR LY S, ey
it

T e

S e

AT CH UM AT AR S My NS RN AT ML O A8 aW 1S L sme h t wws et et v mw wme ak v a4 hv s v e et - - ~

28

memory is:

fuem

If X = input history end Y = output history,
’iﬁih‘(x) = Y whsre

[Yl = the number of decurrances of READ(-=) in X
~
RYR(addr, dats) if the i REAIX-~) in X is READ{sddr)
and the lsst WRITE(addr,~-) in X bafore that READ

Y, = ¢ is WRITE addr, data), if thara ie such @ WRITE

RTR(addr, 0F if the i READ{--) In X is READ{addr)
but there is no WRITE(addr,~~) befors it

Notrtion: WRITE({addr,--) means any WRITE packet heaving ths specifiad adoe Held end

snything at all in the data field.

A funclisngl speciiication of KEM SimEly consisis 0F siatig thas miavw Paalizes

fupy o that s, that is the inpul nistory X is presented to if, it will eventually transmit sutput

history fmu()().

This specification says nothing explicit ebout the states of MEM. This is a basic
property of the hislory *unclien approach {0 system ssecificstion - even for a device whoss
purposs is to have states, ruch as a mamory, the spacificstion dues nol mention the states. O
course, the msmory doss have states, and the stals is a function ef the innut history, Since
the input history rocords ail of tha information tha. has sver gone info the syetem, it conteins

snough information to determing the stals,

We now show how ths system MEM may ba buiil: Thse system uses a re

rendom acooss mamory, with a capacity of one word for sach possibla value of the “adar”

1

TR
i
’\
i

+
o
Y
o,
‘l

i

o

R, [

RONLIAT
By

e
]

oo Lo

ol e

A
2 ;

B Y T PR PR TR ST R

g

29

fisld of incoming packsls. We choose some obvious correspondence between the values of
the "addr™ fiald and word addresses. Esch word can contain any of the possible values of the

“data” fiald of incoming WRITE packets. We choose some obvious correspondence here also.
The memory is initislized with all words contairing zero.

The algoritt of the implementation of MEM is as follows: !f a packet
WRITE(addr, data) is recaived, the data fisld is written into memory at the word address given
by tha addr flald, 1¢ g packet BEAD{addr) is received, the word at the appropriste address is

nondastructively read, snd s packet RTR(addr, data) containing the data fetched from memory,
te returned

This system may be implemented by the program which follows. "Memoary” 1s
an array which represents the actud! memory.

grocess starls st A
input port IN

qutput port OUT

var command, adar, deta

arvay momory init 0

| wait for input

A: unti] packet is available et IN do;

command := packet fzom port IN;
| anelyze input pecket

i command = READ(--) then
let command = READ(addr);
send RTR(addr, memory(addr)) at port QUT

else

PR e AN SRSE0L §
- -
st o]
RS

ST mgf%?"?“- : a’a?ﬁﬁfﬁ%l,.,

e

PRI TR

e

SNSRI D Y AT X NN Bt " A e N0 ma it & L ke Shens ae v PR

30
lel command = WRITE(sddr, data);

memory{addr) = dats;

goto A

Notes:

(1) The statements for receiving and lransmitting packets are exceszsively primitive. Slightly
improved versions will be pressnted later.

(2) The expression RTR(addr,data) means “a RTR packet whose fields are filled with the
cucrent valuss contained in addr and data™

(3) The "~-" in conditionals has its usual meaning. "If packet = WRITE(3,--)" means “if packet
is @ WRITE packet whose first field is 3"

(3) The "ot packet = pattarn® statement is an assignment statement that sets the variables
appearing in the patterr, to have the values of the corresponding fields of the packet. “let
thing = WRITE(addr,~~)" means "if the type of thing is not WRITE, it is an error; otherwise
set adir to the first field of thing and ignore the second field™.

We now provae that this implsmemai.u satisties thy spscificetion 'MEM . First, we noed to
show that tha memory state equals the system stale (as defined by the input history) under
the following correspondance:

For all X, the contents of memory address X for a given input history is

zero if the input history contains nd packets WRITE(X,-~)
Y if the history doss contain such packets, and the last is WRITE(X,Y)

Proot by induction on the length of ths history al port IN. For length zero, all cells contain

zero by in *ializstion, and the history containe ro WRITE packets at all. QOtherwise assums

[S Ty

B b
LRFSE ?‘?5;
3 3
1w *:%“\:s
Eﬁ So
5.

5

PX

TSR R S

A

IR AR

EET R

-3

TR I, I

AT e T T ST AR

T AT A

- e, e

o e e am

. A o

it s BT
ETRA e

L SR R

o gt
et

Ezﬁwyzgw,’:-mmgmmmﬂwwwnﬂ,3 Ar g A Ay n e e e e e I R 2 TR P ~ . -

31

true for any history of length K and prove it for K+1.

It INy,, = READ(--), nothing wss writion into memory between receipt of IN,

and INM y 50 tho memory state did not change. The existence of WRITE(--,--) packets did
not change either,

If INy,, = WRITE(addr, data), no memory cell cther then addr changed, and the
existance of WRITE(X,~-) packets did not change for X » addr. The contents of memory cell

addr is now dats, and the last WRITE(addr,~-) in the history is now obviously WRITE(addr,
date).

Next, we prove correctness of the implementation. If the input history = X, we
will show that fw“(X) will appear at the output. This proof is also by induction. If [X| = O,
!MEM = €. But the implementation specilies no output except in response to input. Now
suppose X = x,x, L Lot X = X|Xg « Xy . By induction, f . (X) appeared at the
output when X was the input history. When L arrived, the system transmitied no output if

Xy, Was & WRITE, anc transmitted RTR(addr, memory(addr)) if Xpoy Was READ{addr).
Thersicre the rosponse to X is

f”m(x) concatenated with

€if ¥y, * WRITE(--,-)

RTR{addr, mersory(addr)) if Xt ™ READ(addr), where the memory
state is that left by X

FAVALY

Now ity (X = I X ¢ 1 if %y, is READ(--), which is the length of the
response to X,

Alsg, If Yo WRITE(=~,~-), fuiM(X‘) - iMEN(X); ang if X ™ READ{addr), me(X')
L) fwu()() concater *ad with RYRaddr, z), wheis z = the dats field of the last WRITE(addr,--)

3Ty

MrTLaET

Te ATV I,

TV .

TLTE A e R TN T

o U

32

packet, or zero if there is none. This is just the contents of memory word addr.
The response to X' is therefore .0 (X).

This system has a fow simplifying properties that a gensral systam of the sort
to be used in the packe: memory system can’t have:

1) It is determinate. !
2) Its bahavior is defined for all possible input histories, that is, there are no illega! inputs. .
3) It operates infinitely fast, that is, It is impnssible for input commands to ceme too fast for it

to handls. (Nole that the above proof says "when X, drrived, the system transmitted %)

2.1 NONDETERMINACY

Nondeterminate systeams cor taks a wide variety of forms, and the problem of
formalizing the behavior of all nondeterminate systems is far too complex to be treated in this
thesis. Only the types of nondeterminacy that arise in connection w:th the structure facility
for the data flow machine will be treated.

The principal type of nondeterminacy that will arise in packet memory systems
is the removai of the requirement that the RTR packets be returnad in the same order as the

REAU packets ihat gava rise to them, For exanple, the input history
WRITE(1,11) ; WRITE(2,22) ; REEAD(1) ; READ(2) could resuit in
RTR(1,11) ; RTR(2,22) orin RTR(2,22); RTR{1,i})

The system MEM is too simple to cispluy this sort of nondeterminacy. For example, MEM
would return RTR(1,11) as soor as it raceived the first READ packet. it would not yet "know"”
that it was about to recsive a second READ packet which would give it the option of
producing its cutput peckets in either of two orders. Later, we wiil axhibit implementations o
systems which can masningfully take advantage of this nondeterminacy. For now, we will just
have to accept tha! such implementations {that is, descriptive specifications) evist, and

examine the form that the functional specification for such a system might taks.
2.1.1 FUNCTIOMAL SPECIFICATIONS OF NONDETERMINATE SYSTEMS

A nondeterminate system can give any of several legal output histories in
response to a given input history. The "function” defining the system’s behavior is therefore
multiple vaived. Ons .3y to handie this situation is to treat ine behavior of a system as being
defincd by a relation instead of a {unction. The method to be used here, which is completely
squivalent, is to use functions whose values are sets of output histories. For example, in the

system fND:asEM that we are devsloping,

ol FIISTS %,

RAR LT %
L)

o

PR

WL SRR E O
! ’ s :- Z
) e b KA S . SATE S

e
“e

i T
P e SR

[VR

DS

EA -

N

R WA SO

e e = vy 3

34

fuomeuWRITE(L,11) § WRITE(2,22) ; READX1) ; READ(2) =
{(RTR(L,11); RTR(2,22)), { RTR(2,22} 5 RTR(L11)) }

The siluation may arise that {(X) is empty for some X. This means that X is not a
valid input history, and the behavior of the system is undefined. This is different from the
situation in which an illegal input gives rise to a well-defined “error” response (packet) from
the system. An "srror” packet is certainly more desirable than saying the system behavior is
undefined, but some situations, such as receiving acknowiedges for packets that were not
sent, are so pathological they must simply be assumed not to occur. Furthermore, at some
lavels of detail in the description of a sysiem, it is convenient to ignore error conditions if one

can prove that they won't occur when the system is functioning properly.

A functional description of a nondeterminate system is therefore a definition of
a function which maps input histories into sets of autput histories. It is usually most
convenient to describe it as a pradicate defining which histories are in f(X) for a given X, and
that predicate is often the logical AND of a number of other predicates, so the functional
description looks like:

Y is in f(X) if
F|(X,Y) and
Pz(X,Y) alc.

Tha rule for realization of 2 function is as follows: A system realizes f if, given input history

X with f(X) nonempty, it will eventually produce some output history in (X).

The multiple valued functions realized by nondeterminate systems must obey a

monotonicity property as follows:

——

Chmenea s v e wA e ma o e

35
NONDETERMINATE MONOTONICITY (ND-MONOTONICITY)
§f Q and P are input histories and Q 2 P, then for

any output history X in #(P), if {(Q) is nonempty there
is & history Y in Q) with Y 2 X,

Roughly speaking, this means that receipt of a legal input symbol will never

¢ make the system unable to proceed legally. The purpose of the qualificaticn “if £(Q) is
;

nonemptly” is to aliow for the possibility that ar illegal input packet might make the system

I unsble tc procesd.
I.
We can now give the functione! specification for the nondeterminate memory

NDMEM, which can arbitrarily mix RTR packets for different addresses.

i‘ tnomem

If X = input history and Y = output history,
Y is in fuouey(X) if

e e R

(1) Y ccirsists only of packets RTR(--,--), and

(2) For all addr, the number of READ{addt)’s in X = the
numbar of RTR{addr,~=)'s in Y, and

(3) For all addr and K, the k™ KTR{sddr,~-) in Y, if it exists, is RTR(addr,val)
where last WRITE(addr,--) in X befors K™ READ(addr) in X
is WRiTE(addr,val) if such a2 WRITE(addr,~-) exists, or val = 0
it no WFITE(addr,--) exists before the K" READ{addr) in X

L

The system NOMEM has the property ihat the data returned in a RTR packet is
the data in the memory (that is, the deta in the most recent WRITE command addressing that
cell) at tha instant of the READ commend corrasponding fo the RTR. At the instani the RTR
packet i3 sent out, arother WRITE command might have sireedy been received, but that VWRITE

JEPEIRURY | NP Y

will have no effect on this RTR packst.

P
\

-

VTN
%
+

AN R
9z S Y
v e P, ST ’?v’ﬁ’ff’;ﬁﬁ% "Svﬁ%w{%%’ }%ﬁ%

R R R R N T R R e L Y R AR T TR
Y T % LAy PG

P i A SR SRR L

RTINS,

ST n ey AT T T TR T

e e . % o _

§

2 oy . P
‘?‘.4\&‘??}"@?5?3?{‘5‘2@}%?%7 B T e R N R D P ey v e s me e en vy e . - D e e ae e v ke e e o e o

36

Example

inpul: WRITE(A,1) READ(A) WRITE(A,2) REAXA)

output: RTR(A,1) RTR(A,2)
- time
At the instant the first RTR packet was returned, a WRITE command changing
the date from 1 io 2 had already beoen given, but the function fnomew requires that the value

i be returned.

Here is a rough outline of an implementation of a system that realizes 'NDMEM :

SYSTEM #1 (realizing fyn\e)
(1) When a WRITE command comes in, write on the word of memory instantly.
(27 When a READ command comes in, fetch the word from memory instantly,
form a RTR message, ang put it into a butfer or queus.
(3) Take messages out of the buffer and return them as output packsts at any
time and in any order, subject to the restrictions that:
(a) every packet in the bufier is eventuslly removed,
{b) whenaver a packet is removed, it must he the oldest in
the buffer among those with its word address (that is,
the buffer is first-in-first-out (FIF0) with respect to

each address). I

The implementation given above still requires that opsrations on the memory be
instantaneous, so it \s not very useful because it doesn’t take advantage of the dalay between
a READ packet and the RTR packet that results. The data in the RTR packet must be the
contents of the memory word at the instant the READ/RTR interval begins. We would like the
system to bs abls to use the value of the memory word at any instant during the READ/RTR

interval. Here is an example of a system tha! tukes such liberty:

L

Ny NI SIS 1P, TR Y R P T [

37

SYSTEM #2 (purported realization of fy,, .r\)
(1) When a WRITE command comes in, write the word of memory instantly.
(2) When a READ command comes in, put the message READ{addr) in the
Pending Read Buffer (PRB).
(3) Take messages off the PRB at any time and subject to
the same restrictions as belure, namesly that every
message is evzintually removed and the buffer is FIFG on
each address, When the message READ{addr) is taken from the
Pending Read Buiier, fetch the dsta from memory and form
a message RTR(addr,data). Send the latter to the
Finished Rced Buffer (FRB).

{4) Take messages off the FRB at any time and in any order
subject to the same restrictions as before, form a RTR

packet, and sand it as output of the system.

This implementation does not realize fNDMEM . In the packet timing graph sfier
the definition of me , the first RTR packet might have value 1 or 2 if this implementation is
used. (The sscond RTR packst will always have data value 2))

We might like the system to take sven more liberty, by parforming memory

writes, ss well as roads, whenever it wishes, Such an implementation might be as follows:

Sysicm #3 (purported realization of fy,)
(1) When a WRITE psckst comss in, put the message WRITE(addr,dsta)
on the Pending Write Buffer (PWB).
(2) Sams as (2} in System #2.
(3) T2ks mossages off the PWEB subject to the same restrictions
us before, and writz the data ints memory.

(4) Same a0 {3) in System k2, excep! that there is an additionai

o e ——

¥

iy

&
"

N

X
-

s

T4

g
iR

e

o

B

SN

LRI S TR

2

R IR v

SRR

AL

LR

TR TR R e TR TR

B e S DY A S W SRt i Y R KOG RPVRE - e L e T rme s s b o e g et e emew w4 e s v 4 T S N = P IS

38

restriction that no message may be taken from the PRB if a
message addressing that word is on the PWB,
(5) Same as {8) in System »2.

This too fails to realize fNDMEM . iiowever, both ystem #2 and System =3 do
realize fy . if N0 WRITE packet is ever sent to the system when any READ/RTR transacticns
are in progress on that word. That is, before a WRITE.packet is sent, a RTR packet must have
beer received for every READ packst sent addressing that word. Fortunately, it is not
difficult to guarantee that this requirement is met: it is simply a nondeterminate functional

specification for the "rest of the world”, which we will call the "usar®.

Definition: The user of a system is that to which the
system connacts, and Is itss!f a system. The input ports o?

the user are the output ports of the given system, and vice-versa.

It would of course be totally useless to require that, in order for a raalization
of ’HJMEM to work, its user must realize a determinate funrtional specification. In fact, the
user of a system shouid have as few restrictions on its behavior as possible. Such
resirictions can generally be specified by requiring that the user realize some nondeterminate
function, just 2s the system itself does. That i, the difference batween system spscifications

and user spacificetions is nothing but & matter of degree of restrictivensss.

The requiremsnt that NDMEM's user not send & WRITE command when any
READ/RTR transactions are in progress can be mat by requiring it to realize the following
nondsterminate functional spacification fNﬁMEWSER :

| !
fomemuser

It Y = innut history of USER and X « output histor,
{note the sxchange of input and output so that X and Y

rafar to the seme pucke! streams in both tha system ard its vser)

Elzg‘ggzem‘qﬁggﬁr%w@‘%fgﬁwwm@w@»\wm R U PN SRSy e S e By et Rep amn wse sie

39

then X is in fynyevuser(Y) if
{1) X censists only of packets READ(-~) and WRITE(--,--)
(2) For all addr, for any WRITE(addr,~=) in X, the number of
READ(addr)’s preceding it in X is < the number
of RTR(addr,--)’s in ¥

The function fNDMEMUSER is easily seen to be ND-monotoric. This is because the
restrictions on the user’s output X never become more stringent as Y increases. As Y
increasss, the proposition "the number of READ{addr)'s preceding it in X is < the number of
RTR{addr,~~)'s in Y" never goss from true to faise, so the set of legal arrsys X does not

1 decreate. (If the "< had hean rapiaced by "=", it would not be ND-monotonic.)

While system #3 does not by itself realize f ., ... it does realize fy. ., if
connectad to a user that realizes fuser To prove this, the important step is to show that each
READXaddr) packet generates a RTR packet containing data defined by the most recent
WRITE(addr,-~) packst proceding tha givan READ(addr) packet in the input stream.

Lat to = the instant when the READ(addr) packet comes in, There may be
pending WRITE(addr,~-) packeis in the PWB at to. If there are none, the most recent
WRITZ (addr,-~) packat in the input stream has already passed out of the PWB and into the
mamory unit, so its data Is In memory word addr. If there are WRITE(addr,~-) packets in the
PWE at t,, ths most recontly insertad pucket thers Is the most recent WRITE(addr,-- packet
in the input stream. Therefors, letting

r

the dets in the youngest WRITE addr,--) packet in the PWB at time t
D pgarl) = 1 it there Is such a packet

the contents of word eddr in the mamory unit if not,

we must show that the data to be sveniually returned in @ RTR nacket is Dm:“o)' et t, =
the instant wnen ths READ(eddr) packet lsaves the PRB. First, we show that D, (t) does not
chenge from tQ te tl. Since tha READ{addr) psckst has entered the sysiem, it hau leit the user.

Since the corrosponding RTR(sdd",-~) packet has not yet buen generated by tha system {end

B R TR IS ST 1 s s o e e

20

won't be until after !‘). it has not been received by the user. Thorefore, there is a READ/RTR
transaction panding on addr, so the user is not sending any WRITE(addr,~~) packets.
Therefore, whichever WRITE(addr,--) packet in the PWB Is youngest will stay yaungest as
long as it stays in the PWB. So ss long as there are any WRITE(addr,~-) packets in the PWB,
D.“' does not change. As long as thers are no WRITE(addr,~-) packets in the PWB, D_,, = the
contants of memory, which doesn't change either, because only removal of a WRITE(addr,--)

packet from the PWB can change the contents of memory word addr,

There can be no transitions from no WRITE(addr,~-) packets in the PWB to one

or more packets, becsuse the user is not sencing any. The remaining casa to consider is the
dissppesrancs of the last WRITE(sddr,-~) packet from the PWB. This packel is ciearly the
youngest, so D, , (just prior to disappearance) = the data in the packet. This data is written
into memory by rule 3 of the implementation, Dm'(just after disappearance) ~ data written

into memory = data in the packet ihat disappeared. Therefore Dm(to) - D.“'(t').

At time t,, when the READ(addr) packet leaves the PRB, there are nc
WRITE(addr,--) packets in the PWB, by ruie 4 of the implementation. Therefore D, (t,) =
Dyast;) = contents of memory word addr at t,. But when the READ{addr) packet ‘s taken from
the PRB, the memory word is read, and its data goes into a RTR{addr,--) packet in the FRB.

that packet Is therefore RTR(addr,D . (t,)), and is tha packet that wiil eventually be returned
to the user.

TR VBT

i

This example demonstrates a general principle:

Whether or not a given implewentation of a sysiem realizes a
given function may depend un whether the system’s user

realizas some othar spacific function.

7T T pA TR :T;‘(:bj—,'av‘mﬁwrﬂfgﬁg{ =

There is no way to get around this fact. There are systems that correctiy
raalize useful functions (sven completely determinate functions) wher tonnected to systems

that obey caertain rules, b { behave in a totally pathological vay otherwise. Furthermore, the

2

SRS

125,

A e s R LR e R
Z PR %

R R

$o cok
3

R e It hice At

e

??“-q ,~." e R
SRRy y R

: R o AR A

PR el A TR WA A

PRI

3

]
"
4
A
y

4

e

BT

R

oy o5 S

R AR st

S SN Cy Tl A

EEE S ETGOT Py 5 AR 0 T Vi s = 5 avmaen . -

41

system often car't teli whether the user has broken the rules. In the case of system #3
above, the system would have been able to tell whether a WRITE(addr,-~) packet came in
whils a READ/RTR {ransaction was pending on word addr, but in some cases the system has
no way of knowing whether ils user is misbehaving.

The structure controller and packet memory system for a data flow computer is
such a system. Perhaps the most impartant example of the structure controller and memory’s
dependence on the behavior of their user is the reference count and garbage collection
problem. The rules that the user {i.e. the data flow computer) must obey in order to assure

correct refsrence accounting are as foliows:

{1) No pointer to a structure may be duplicated without giving a
command to increase the reference count.
(2) No command to decrease the raference count may be given

unless a pointer is discarded.

These rules guarantey that the reference count for a noda is at isast as graat
es the number of pointers to tha node contained anywhere in the computer. (Actuasily, the
rules will be such that ths referenca count is exactly equal to the number of pointers to the
socka. However, the penalty for too high a referance count is simply that a useless structure

Iaik, {0 bo reclaimed and wastes memory space.)

Now suppose the computer (that is, the structure controller’s and memory’s
ussar) violates the ruls and allows ths reference count to bacome too small. Eventually the
raforence count may become zero while a pointor to the node still exists somaswhere. When
tha count goos to zero, the memory system reclaims tha node and puts it on the list of free
nodes.

Two possibitities then arise. If an immediate attempt is made {o use the
*spurious” pointar (o the call, in 8 SELECT instruction for examale, the structure controller will
song 8 READ command to the mamory. Tha mamory will kinow that this is an tHegal command,

that ¢, that the user hes wiolated its spacification. If cen then signal an appropriate arror

B B R MR RN g e T o Sareme s T s S re - .- e - U VU g

4z

corvdition in ordar to pravent the compuliatior: from giving an incorrect result.

If, on the cther hand, the cell is ramoved from tha free storage list and used by
the structurs controller to build soms new structure by the time the spurious pointer is used,
there is no way the memory can teli that a violation has ocsurred. It has no choite but to
pracess the spurious command in the normal way, which resuits in its referring to a structure

which is completely different from what was intended,

{iﬁ This is not to say that the data flow computer has no way to check for arrors
in the handling of referance counts, Methods of doing sc wiil be discussed in section 5.0.5.

1

\g 2.1.2 MUTUAL CONSISTENCY OF FUNCTIONAL REALIZATIONS

»; Suppose a system realizes 'svs contingent on its user realizing f,cpp which the
5

Ef user does if the original system realizes fo,. . Doss it follow that the roalizations actually
Lg occur when the twe systems are connactad to asch other? Is it possible that they could both
E violate their spociiications, with each blaming tha other? Let the systems be S and T, Each is
g the other’s user.

g If any violstion does occur, there must be a first instent of violation. That is,
;’m there is an instant t, when it first becomss true that one system {say S) has an output history
E which does not legally follow from its input history. There is s delay, however slight (even if
(it is only the dalay causad by propagation of alectric currents through wiras) in the behavior
E of ;. Therefore S’s output history at to depends on T's outpu! history slightly before ty s at a

time when T was nuv malfunclioning, so S cannot blame its malfunctionon T, Even if S and T
: both malfunction at precisely the same instant, neither S nor T knows about the malfunction of
5 the other at that instant, and so neither malfunction can bi excused. It tollows that, if both
systems conditionally obey thair functional specifications, they will obey thei- specifications in

practice.

L P B AT W - b6 L a e e e
& Y
.
X

)
N

SATUEP
GHRR

IR RINT

fand

43

R

Y

2.1.3 MONOTONICITY OF FUNCTIONAL SPECIFICATIONS OF THE USER

e 8

We now give an example ¢! how not to define the functional specification of a
user. Suppose the system MEM has destructive readout, so that it requires that the user

rewrite any data that it reads, Suppose furtner that for some reason the same data must be

AN T

v

rewritten, and that it must be done immediately, that is, no other transactions may take place

S .

o~

/
st any address between the read and the rewrite. Here is an attempt at a functional
spacification for USER. Since USER doesn't know what data to write until it receives the RTR
packet, we will require the rewrite to be a consequence of the RTR.

IR N

: fuser

e

b Y = input to user, X =output from user

For all addr and |, if the i™" RTR(addr) exic's in Y and is RTR(addr,data),
then the i™ READ{(addr) in X is immediately followed in X by WRITE(addr,data)

Unfortunately, this does not require the user to wait for the RTR packet after

sending eny READ, not sending any more packets until the RTR arrives. For example, the user
‘might send

e

{ READ(1) ; READ(2))

Until the RTR(1,data) packet comes back, the user has not broken any rules.
When the RTR(1,data) does come back, the user will have retroactively broken the rules end
be unable 1o do anything abeut it. Sitce we would like to simplify as much as possible the
task of proving that systems obey functional specifications, we nead to make the
specifications reflect the types of decisions thal syslems meke in practice. It doesn’t make
sanse for & system to porfory soms opsration or emit some result packet on the besis of an
input packet not heving arrived and not being about to arrive, so 'USER , 85 given above, is
unrassonable.

A

b .)
{;:».w:e?'j'e.;;{k’fﬁ”ﬁ,ﬁ“?;&cgw;\wvavmw. B S e G ey iveeseare am e b s s - .. e e o e . -

&4

T b O PR e S 7

2

o N T R T
NSNS 2P S S s sl S R B R

The problem is that 'usm is not ND-monotonic. To sme this, refer to the
notation in the dafinition of ND-manotonicity and-lst

153

Pwe Q=RTR1,deta) {input histories]

ENETAM NI

=

SR

e,
£

X = (READ(1) ; READX2)) .[output history]

P

Now Q 2 P, X is in fussn(P) and fusck(o) Is nonampty (containing, for example,
READ(1) ; WRITE(1,data); READ{2)), but there is no history in fucep(Q) that is 2 X.

The corract spacification for the vear Is:

It Y = input to user, X = output from user

For all addr and i, the i READ(addr) in X, if it exists, is
immediately followad in X by WRITE(addr,data)
if there is an ith RTR(addr,--) in Y and it is RTR{addr,dzats)
last in X if thers is no i™® RTR(addr,~-) in Y

ST T STV T e T T N T N o fV N, T T NG S ALY T T I r T e
AT e T R O SR T e 4&3,7;3";'*;&"}} EUCTENY § «.v{:’,&,&,}_‘#u

Thie is easily seen 0 be NO-monctonic.

]

P

TR M T T g R LT S T T T S VR B

Ty T AR

SRRy 8

O A

2

W e Y

45

)
g ds

Sy
R L%

ERR S

e
ke
D,

2.2 PACKET ACKNOWLEDGMENTS AND SAFETY

PRt

s

vm:wf*x%—g,xw?’?“
e

All of the sysiems considered so far have had to respond to incoming packets

however fast they were sent by their user, and there was no limit to the rate at which the
g user could send them. In the first implementation of MEM, the memory unit has to accept the

E > commands directiy, and hence has to operste st unlimited speed. System #3, implementing
NCMEM, ceems a slight improvement in that it only has to put the commands into its buffers

infinitely gquickly, until one realizes that unless the memory unit itself is infinitely fast the
buffers have to be infinitely large.

-k

oM

A

This is clearly unacceptable; no interconnection of speed-independent modules
can make such assumptions. The problem is one of safety. No packet may be sent until its
destination is ready to raceive it. The safety problem arises at several levels in data flow
computers. Hers we are concerned with it only at its most microscopic level. The solution to
the problem is to acknowledge each packet transmission. That is, for each port transmitting
dats, there is anothar port transmitting acknowledge packets in the opposite direction. Every
data packet musi b2 acknowledged before the next data packet can be sent on the same port.

We will require ali ports of all systems to havs such an acknowledge port.

{Even systems which would be safe without acknowledge ports will have them.
This is because of the manner in wuich packets are transmitted. A packet transmission is
indicated by a zero to ons transition of a "request” signal. An acknowledge signal from the

receiver is neaded to tel! the transmitiar to raset the request signal.)

The implementation of the system MEM may be modified to acknowledge input
commands only after tha transaction on the actual memory unit is completed. This will make it
impossible for the user to send a command while tha memory is busy. Of course, the output
port must also have ackriowledges, since ths system to which the RTR pachets are sent might

be slow and need to be protected agzirst overruns on its input. So the algorithm for AMEM
(MEM with acxnowledges) might be:

(1) If a WRITE packet 1s roceived, updats ths mamory (take your tima!)

"
4

R PR -
%Er’*‘:’w:f’-?f%ﬁ:_v;.»:‘.9:"‘.‘73*}’1?"“?*“5?‘"'%‘:3' S BAIIIA T B SRR T e e A e M 2 e o < e s 4o r s w7 e rees e e % am w e o

» o ’
SRR

T EREAT,
e -

46

and then sand an acknowledge on the input acknowledge port.
(2) 1f a READ packet is receivad, fetch data from the memory snd send

a RTR packet out,
(3) I an acknowladge is received on the output ackrowledge port,

send an acknowledge on the input ackrowledge port.

R e e R e e e Sk ol

RS AR T

Thase three operations proceed concurrently and independently.

’
3

5

} ’ Transmission of acknowledge packets is behaviorally similar to transmission of
-" | normal packets, and can be handled in the same way in the specification of a system. That is,
s -

‘“ ' the acknowledge poris associated with output poris are treated exactiy as though they were
E 1 input ports, and vice-varsa. The system AMEM has two input ports: the “real” input port X
;‘ and the output acknowledge port Yy and two outputs: the "real” output port ¥ and the input
: acknowledge port X, .

E’ .

¢ f

: AMEM

o

» input ports = X, YA output ports = Y,){A

(1) {Y} = number of READs in X

{2) Y, = RTR(addr,data) where the i™* JEAD in X
is READ{addr) end ths last WRITE(addr,-~) before it, if there is
one, is WRITE(addr,dsts), or data = O if thare is no WRITE(addr,--)
before the i'® READ

(2) [X,f = [Y,] + number of WRITEs in X

(8) (X,), = "ack”

GRARSUESARS!

B) X - 1 <X SIS

BT AT T e T

t

- e i e s e

e FTTMNT A

It is easy to prova that the given implemaatation realizes parts 11), (2), (3), and
() of fopy - (It is very similar to MEM) Parts (4}, (L), ard (6) constitute the “"Standard

Acknowledge Restriction” that wa will require sll systems znd all users to obey.

o
g

G
255,

e

T

BT

N

SRR
smersr DRI Syt

hi%P

e

AR S T R SR PR TP PR Y

b »T{(*» - T S TR

R g

LI R IR LN

L I e e
r

47

Standard Acknowledge Restriction (S.AR.) -~ weak form

It X is an input port and X, is its scknowledge port,
(1) X,, consists only of “ack”
(@) X, S I

If Y is an output port and Ypals its acknowiedga port,
1Yl < IYAI +1

Given that a system and its user both obey the weak form of the S.AR, we con
easily show that thsy obey the following:

Standard Acknowledge Restriction {S.AR)) - strong form

If Z is an input or output port and Z‘ is its acknowledge port,
(1) Z, consists only of “ack”
(CARIARAT{EQIARS

Proof: If Z is an input port of the system and an output port ot the user, (1) and |Z,] < 12|
follow from the S.AR. on the system (letting Z = X} and {Z} < [Zy] + 1 follows from the S.AR.
on the user (letting Z = Y), It Z is an output port of the system and an input port of the user,
lust exchange “"system” and "user®,

Tha S.AR. is clearly ND-monotonic and hence admissible as part of a furictional
spacification.

In any proof that = system realizes a function, it suffices to show that it obays
the weak form of the S.AR. cortinga.it on its user cheying the strong form.

Wa can now prove that AMEM realizes parts (5) end (6) of {AHEM , that is, tha
S.AR in strong form.

L R R A I A Sy oA U £ S AR D782 N o A SR, 4 1o 507, = 7 Moo oot % g K Tt 2 s pr e e S S N A e

e

s e APPSR TSR T

Lat Y = output of AMEM and input to user, X = input to AMEM and sutput of user.

First, number of WRITEs in X
= number of acks sent on X, in consequence of (i) of AMEM’s implementation

= X,| - number of scks sent on X, in consequence of (3) of AMEM’s implementation

- Xy - IV,

Now [Y| = number of READs in X (by (2) of AMEA's implementation)
= |X] - number of WRITEs in X (by well-bahavsdness of user)
= X] - X4+ 1Y} (derived above)
S+ -Xd+[vl (from SAR for user)

NSV +1

VETEST A ST VAR
ot nm

A AR

THRIT R

r Also [X,| = number of WRITEs in X + [Y,| (derived above)

| < number of WRITEEs in X + [Y| (from SA.R. for user)

‘ = number of WRITEs in X + number of READs in X (by (2) of AMEM's implementstion)
= [X|

E % This proves the weak form of ths S.AR, from which the strong form follows.
1
|
i

T

2.2.1 CANONICAL PACKET COMMUNICATION

Since the Standard Acknowiedge Resiriction narrowly limits the way
scknowledge ports are handled in the functions! specification of & system, it is not uncommon
for the handling of the acknowledge ports to be similarly limited in the implementation of the
system. Wherever possible, system implemertations will receive and transmit packets in the

following way:

i e
2o s ORI Rl awiray

s

- P S e R e e E A et SO S N
2 e 3 i -, g T e P AIN S NG TS (R TN I AT LN, [R SRG RIET 0 St i ‘
* {w‘g«;ﬁwgﬂ} ,;,wgz:a{;fgﬂvwr-:g GGG LB e T AT g po Y, ¥ T (0

49

Canonical Packet Reception (RCVPKT)

(1) Wait untit a packet has arrived on the input port (it might have already arrived by the
time this step is executed); take its data
(2) Send an acknowledge for it

Canonical Packet Transmission (XMTPKT)

(1) Send the packst
(2) Wait for an acknowladge

These operations will appear in the system impiementation language as
"functions” that take port names as arguments and appear in assignment statements. The data
conveyed by the := is the contents of the packet, Assignment statements contaiving these
operations arz like input/output operations in ordinary computer programs in that they “hang
up"” the program until the packet communication has taken place. "Var := RCVPKT(port)" waits
until an incoming packet has arrived {and then acknowledges same). "XMTPKT(port) :=
expression” waits until the transmitted packet hss been acknowledged. Programs may use
multiprocessing as long as no RCVPKT or XMTPKT operations can be simuitancously executed
by two processes on the same port,

It is easy to see that any impismentation using the RCVPKT and XMTPXT
operations obeys the Standard Acknowledge Restriction.

Systems nead not use thess canonical operaiions in order to be correct. For
examplo, tha implementation of AMEM givon previously did not. That is why the proof that it
obeyed the Standard Acknowledgs Hestriction w. so complicated,

Here is an implementation of CMEM, a system whosa behavior is similar (but not
identical) to AMEM:

N]

WA o

BT

Iy 5. B A R AT
s e s A Setans EUABSEAEI FIIT IITRE A ¥ AR SN o T TR

o A b Ao Pet NAE o8 e 2] st e

Aantaa

by romen

50
process starts at A
input port X
output port ¥
array memory init 0
var command, aidr, deta
A: command := RCVPKT(X);
if command = READ(--) then
let command = READ(addr);
data = memory(addr);
XMTPKT(Y) := RTR(addr,dats)
else
tot commerdt « WRITE(eddr,data);
memory(addr) 1= dats;
goto A

e s 1o = o ey SevTETRA A e Tn

o ATIAL S 90 Y7 N A N A, W BT (i e T A AR S TR I P 3 s

SR deoe - B .,
PRSP vk B vasice s e Aol TR TR , N i ot - vm—— a4 e o -

51

2.3 LATENCY

CMEM and AMEM behave differsnily in a sublls ray. Suppose the user
transmits a READ packet and than refuses to acknowledge the TR nacket that results. AMEM
refuses to acknowledge the original READ, and the entire system cumes to a halt, since the

!

é B user can’t send anotho command packet uniil the previous one was acknowiedged. CMEM
acknowledges the READ packet unyway (it happens automavizaliy as part of the RCVPKT

operation). It then reiuses to acknowledge any further command packets until the RTR is

acknowledged, becsuse it gets hung up in the statement "XMTPKT(Y) := RTR(addr,data)".

CivicM beiraves as though it has an input buifer capebie of sioring one packet.

This difference shows up in the functional specification. Lines 2, 4, 5, and 6 of

Y P P AT A SRR

b the specification of f, ., [section 2.2] apply to LivEM aiso. Lines 1 and 3 are different:
; faven
(1) Y| = number of READs in X
(3) X, = IV, + Pt - numbar of READs in X
fCME&&

or{X] 2 2 and i7al 2 nunber of READs in (X - last packet))

rumber of READs in X if [X| =0 or 1
(1Y) =
number of READs in {X - last packet) otherwise

(1116 X = 0 07 1
3) EXAi = or { [X| > 2 and [YAI 2 number of READs in (X - last packat))
X| - 1 othoswise

This illustrates ine fact that corract analysis of tha latency of & system can be

quite complicatad and requires careful analysis of the aigorithm.

S b b el A A Y e

EAT =

PRI ST

TR

S "J«jgﬁf*f‘,‘?

RN £ D

S

52

The only diffarence between AMEM and CMEM arises if the user fails to
acknowledge sl! RTR packsts, that is, if lYAi » Yl If [Yal = I¥}, ane can easily show that, for
both AMEM and CMEM,

[¥] = number of READs ir X
Xl = i

(To prove this for CMIZM, show that if [X| 2 2, the case !YAI < number of READs

in (X - last packet) can’t occur.)

The latency of & system Is the number of commands that It can accept ana
acknowledge whose results have not besn acknowledged by the user; that is, the nunber of
pending commands thst it can "remember”. Because systems are so varied in their behavior,

the concept of latency is not easy to define precisaly.

One system for which it can bs defined Is ths FIFQ, or first-in-first-out buffer,
A FIFO of length N (and having latency N) Is a system with one input port and one output
port, which realizes the identity function and acknowladges up to N more inpute than its user
hat acknowledged outputs, Ths functiorn reslized by a FIFO of length N is:

tn

(I)Wi“ﬂ'iﬂ{lxl»mh 1}
{2) Y‘ - X‘
(3) 'Xal = rain { X|, h'Al +N}

following program:

processss start at A, B

input port X
output pori Y

NSRRI

£

53

s
I<
[
-
3

<
-
-~
©
3
-
(=]

i queue population

, P e N
TR B Y I I gs:*‘:};‘?“?"?ﬁ?”?‘” o SERRAREN G

g g7

A: until p # N do;
k := RCVPKT(X)
store k. at end of quaue;
p=ptl;
goto A

8: until p # 9 do;
m := item taken from front of queus;

XMTPKT(Y) = my
N pp-l
% goto B

For N =] this becomes:

process starts at A

input port X

output port Y
var P

- on e -

A: P = RCVPKT(X);
- XMTPKT(Y) 1= Py
goto A

A FIFO of latency zero cannot be implemented by any system using the RCVPKT

end XMTPKT operations, though it can ba implemented with a few pieces of wirs.

Appendix | containe s proof that e serias connaction of FIFQ's of lengths M and
N ylolds & FIFO of length MeN.

R e R R TR T e A T g

I
TR

e S T o s e e 35

X R

R B

A -

~TT

ST OO T NN e Ny e e - - . L -

54

When systems differ only in their latenvy, it is sometimes possible to make them
equivalent by adcing FIFO's to various ports. Fer example, it can be shown that CMEM is
identical to AMEM with a FIFO cf length one on its input. 1f it could b shown that every
system X is squivsient, except for latency, {0 a system XO defined as having latency zsro, then
the latency of the system X could be characterized by ths lengths of the FIFO's that would
have to bz added to the various ports of X0 to make it idantical to X. A sysiem of latency zero
would have to be one which never acknowledges any input packet unt all resultivg outpui
packets have been sent and acknowledged. AMEM is such a system, so CMEM could be said to
have {atency 1 on its its input port and zsro on its output port. It is not clear whether sucih

an analysis csn bs appliad to nondeterminata systems of signiticant complexity.
2.3.1 ARPSITRATORS, DISTRIBUTORS, AND ALLOCATORS

Three basic systems are very important in the Jesign of the structure

controller and memory, as well as other places in data flow computars.

The arbitrator is a nondeterminats system with N inputs and one output, which
transmits each incoming packet to the output. The order of the packets from sach input must
bo preserved in the output stream. The order in the output stream oi packats from differsnt
ports is arbitrary. In any reasonsble implemantstion it would depend cn which input packet
srrived first, An arblirator restizes the following function, in whick port number ia indicated

by a superscript instead of a subscript:

. e
basic (zero latancy) arbitrator fang

1t X5 %2 ... XN are inputs and Y is cutput,

1 g2 ! iy H
(XA,XA,...X:,J)efARB(X,X ST

, PR o I
\l)lY!‘mln(LAIXl,lYA|+l)
fel

(2'Vie[.N) I)Ql = numbsr of packets from X' in firet v} packets of Y
(3) W 1 @ [LN], if Lei) = [%), the seauance <i, >, <i, 4>, ... <i, X >

15 & subsequence of Y.

wara we e AT A v v A D P el N - - - -— e v ~

B

SATARWS W ST,
RS :x§§w£"$E

FRERIL IR SN

s N S

@ gt 3t - PRI ORI A NI AR

o e o

L

£5

Each incoming packet is tagged with its port number so that its source can be

icdentifiad in the output. This identification featura is used in a few, but not all, applications of
the arbitrator.

Arbitrators are the major component of the arbitration network of the dats
flow computer. The principal uss of the arbitrator in the structure memory is to allow the
addrass space to be divided into smail pisces, with a separate memory module handling
trsnsactions on each piece. The LOAD packets sent back from the several modules are

merged in an arbitrator, so that the entirs interconnection of modules behaves as if it were
one memory system,

Arbitrators of nonzero letancy may be defined as zero latency arbitrators with
various FIFQ buffers on the ports. Such arbitrators sre useful in various places throughout
the dsta flow computer, but there is one piace where the arbitrator must have latency zero.
This is in the transmission of packets from the structure controlier to the memory. When the
structure controller raceives an acknowledge for a packet it has sent to the memory, it must
know ¢ ! that packet is ahead of any other packets that might subsequently be sent to other

input ports «f the arbitrator on that memory unit. This problem wili bs explained in section
5.0.4.

An arbitrator of zarc latency may be realized by the following program:

process starts at A
input ports X, ... Xy

output port Y
var p, input

A: wait until a packet is available on any input port,
I8t p := that port;
| this is nonde! rminate!

input = the packe! on port p; { do not acknowledys yet
XMYPKT(Y) 1 <p , iriputd;

AL LS I

Vg

= RS 3 E R R T Fon T 1N e e
L R R e AR T PO G T G T

e r R T TR @Y v

(3

Ry R R

56
V send acknowledgs on port p;
i goto A
) A distributor is a determinate systera with one input and N outputs, which

transmits incoming packets to the output port selectad by a data field in the packet. Incoming
- packets are assumed to be of the form <port, data>. The distritutor strips off the “port” field
in the final rasult. An N-output disiributor realizes the following function:

.

basic (zero lstency) distributor fpe.

1 X Iz Input and Y1, Y2, ... YN ars outputs,
(e Y X) et YA YE L Y i

(1) VielIN) IY‘I = number of packets <i,--> in X
N
2 Kl= 2 Ml
is]

(3) Vivj, v;-dat. where j packet <i,--> in X is <, data>

Such a distributor may be implemented as follows:

A o

process starts st A
input port X
output ports ¥, ... Y

A: wait until a packet is svailable on port X;
z := tho packst on port X; | do not acknowladge yet
lat 2 = <port , date>;

XMTPKT(Y wﬂ) = data;

send acknowledge on port X,;

goto A

Higher latency distributors may be definad wn terms of basic distributors and
FIFO butfers.

e eep—

e o e - ——

57

Distributors are the principal comporent of tha distribution network of the data

tiow computer.

An allocator is a nondeterminate variation of a distributer which ransmits
incoming packets to one of severai output ports, Each packet is sent to any ocutput port that
is ready to receive it, that is, any port that has acknowledged all previcus packeis sent to it.
An allocator is normally used to send packets to a group of identical units, always selecting
any unit which is not bu,y. The structure controller of a data flow computer will typically be
raslized in the form of several identical units in order to increase throughput. Operatibn
packsis from the instruction celis will be sent through allocators to the structurs contral units.
(In fact, the othar functionsi units of a data flow computer will be handied the same way.) An

i-ouiput alivcator realizes the following function:
besic (minimal latency) allocator fautoc

If X is input and Y', Yz. YN are outputs,
1y2 N 2 Ny ;
(Y5 X)) € Fpoct™s Y Ya oo YO
N .
(M 3 W=

N
() Wy =rmin {X),N=1+ > ¥AI}
kel

3) YLv3 .. YNare disjoint subsequenccs of X

It may be implemantad by the following srogram:

processes start at A, B

input pert X
output ports Y .. YN

queue g size Ninit (1,2,... N)

var pop init N

A, wail wnbd 0 packel s available vn podt 2

2 :» the packat on port X; | do not acknowledge yet

i R 1= jlom ot sead of g

L pop = pop - 1;

: send packst 2 o port Y'; | don’t wait for ackrowledge
- uintit pop # 0 doj

: send acknowledge on port X

c goto A;

B: wait until acknowlecige is available on any port Y; .

e B

~ ‘ jet p := that port;

| nondeterminate!
: take the acknowledge from port Y:;
: put p at end of ;

pop := pop + 1;

goto B

The basic allocator given above does not have latency zero in the sense of not
acknowiedging any input untll the resultant output has been acknowledged - such an
srrangement would defeat the eliocator’s purpose. The system given above does have tha

; minimum fstency that makes sense.

-

SR

Y

»

RV s T R TP BT

e

LI

B

T s R TR R TR g

¥

. e v s i &

s T N

-

e~

J N,

g TR,

e SV

R R g

59

3.0 THE BASIC MEMORY MODULE

In this section a formal specification of the memory module "MM" will be given.
MM iz the fundamental building block of the packet memory system. Each MM system is a
memory, somewhat like the system NDMEM described earlier, which handles a specific set of
addresses. To increase total information transfer rate, the address space of the entire packet
memory system may be divided into smaller pieces, with one MM unit handling each piece.
The M units are connected through arbitrators and distributors, and form a system which is
itself an MM. This is "horizontal™ composition, and is quite similar to the interleaving found in
conventional memory systems. To increase the spend on individual transactions an MM unit
may have e cache module "CM" connected to it. MM with CM connected to it is itself an MM.

This is “vertical® composition, and is quite similar to the cache memories found in high
performancz conventional computers.

MM has one input port CMDI ("command in®) taking command packets from its
user, snd one output port RESO (“result out”) returning results to the user. The memory
space is divided into words or cells (the terms will be used interchangably), each of which
corresponds to one node of a siructure. Every memory transaction refers to one word, and
every incoming or outgoing packet bears the address of that word in its address field. The
memory space is the same size as the address space, and the size is known to the user, so
there can be no "nonsxistent memory word” error. In most implementations, the memory size

would be 2N where ths address field of evary packet is N bits,

Notation: FET®) means eny of FET, FET", or FET*, LOAD'® similarly.

Each word in ihs mamory contains a dala field and a reference couni fieid,
which are used by the structure controller as described in section 1.2, LOAD'® and UPD
packats have corresponding fislds. Furthsrmore, FET(packets have a tag field, which is
returnad unchanged in the corresponding LOAD® packet,

e AT NN T

PO

o

TR N R A S TR R T T T T R TR IIITEERINYE,

P

s

VISE e gmew w g oo

T s T ARV

R i LT Y L A Ry N e e P - . - PR A e

60

3.0.1 LATENCY AND INITIAL MEMORY CONTENTS

The specification of MM to be given below does not say anything about latency.
This is becsuse MM’s user is required to acknowledge evary result packet. When this
happens, MM wiil acknowledge every command packet, regardiess of what its actual fatency is.

Hence, an eccurate description of MM's latency is unnecessary.

Initis! memory contents will also be laft unspecified. In the functions!
specification of a memory, the definition of initial contents arises in the specification of the
system’s response to a READ command that was not preceded by a WRITE. The specification
of MM will assume that this does not occur. In an actual data flow computer, a free storage
list will be generated when the system starts, which requires writing on every cell.

3.9.2 INFORMAL BEHAVIOR OF MM

There are 5 types of input packets 0 MM, and 4 types of output packets:

FET(addr, tag) ("fetch”) reads the addressed word and returns
LOAD(addr, data, ref, tag)

["ref” is the raference codnt]

FET*(addr, tag) increases the reference count by one and returns
LOAC (audr, data, ret, tag)

{"ref" is the reference count sfier the increment)

FET (eddr, tag) decreases the reference count by ons and returns
LOAD (addr, dats, ref, tag)

CLR(addr) ("clear”) waits until all FET/LOAD, FETT/LOAD?, and
FET™/LOAD™ transactions on the indicated word have

A
R

P
5
i
i
o
23
%

N CanE Lt
€

(“.“‘.

Y

P T

61

completed, and then returns DONE(addr)

UPD{addr, data, ref) {"update”) writes the data and reference count
into the addressed word. it returns no result,

and hence uses no tag.

MM is nondeterminate as was the example memory NDMEM, in that -esult
packets referring to different cells are not constrained to appear in the same order as the
commands that gave rise to tham. MM is further nondeterminate in that it may rcarrange
LOAD'® packets referring to the same cell. Such nondeterminacy would not have made sense
for NDMEM, since RTR packets with the same dats and same address were indistinguishable,
but, in the case of MM, LOAD'® packets may have different tags.

Since LOAD'® packets involve a change of reference count and may be
recrdered arbitrarily, the question arizes: What happens to the reference counts appearing in
such packets if they are reordered? The answer is that the result packets have refersnce
counts consistent with their own order, not the order of the original command packets.
Exemple: Suppose the veference count of cell A is 1, and the command sequence

FETHA, T1) s FET¥(A, T2) § FET(A, T3); FET™(A, T4)

is sent. Some of the possible results are

LOAD*(A, D, 2, T1) ; L.OAD*(A, D, 3, T2) ; LOAD™(A, D, 2, T3); LOAD™(A, D, 1, T4)
or
LOAD(A, D, 0, T2) ; LOAD™(A, D, -1, T4) ; LCAD(A, D, 0, T1) ; LOAD*(A, D, 1, T2)

Tha refarence count temporarily bacomes negative!

Tha refersrce count appearing in any LOADY packe! is one more than the count

in the preceding LOAD'®) pecket. Similarly, the count in a LOAD™ 15 one iess than, and the

- b e

62

count in a LOAD is equal to, the count in the preceding LoAD®), Some implementations of MM
will never reorder LOAD'® packets referring to the same address, although they may reorder
those for diffarent addresses. If this is the case, the reference count will never become
negative, which removes the need for a sign bit in the reference count field.

'

3.0.3 INFORMAL BEHAVIOR OF MM'S USER

When the user gives a CLR coinmand, it must not send any further commands of
any type for the indicated cell, until the corresponding DONE packet has returned. (The
purpose of the CLR command is to clear out pending transactions. It would defeat its purpose

to continue sending commands.)

Like NDMEM, MM requires that no UPD command be given while any

transactions are pending on the indicated cell.
3.0.4 FORMAL DEFINITION OF MM AND MMLISER

These definitions do not show latency or make any reference to acknowledges.
The user is required to acknowledge every result packet and MM is consequently required to
acknowledge every command. Both systems of course obey the Standard Acknowledge
Restriction. The definitions do not consider the possibility of illegal packet types or invalid
fields in packets. All universal guantifie. . are intended to range over a set that is in each

case cbviou from conteit.

Note: n rules 2, 3, and 4 ths zeroth DONE in Y means the beginning of Y. The
N+1*! DONE in Y, whare N « the numbar of DONgs in Y, means the ond of Y. Similarly for CLRs
In X. The intention is to lat the DONE and CLR packsts break up X and Y into intarvals, which
makes it convenient to think of the entire histories as being preceded and follc ved by DONE
or CLR packets.

,,\
S
Ty

e

- - g;};
N | TIOT v

€3
i

bR
; % If X is input and Y is output, ¥ & £, (X) if
g
i *; (1) For ai! addr, the number of DONE(addr) packets it Y = the number of CLR(addr)
i { packets in X
Ty

{2) For all addr, K, and tag, the number of LOAD(addr,--,--tag) packets between the K'"
Y‘ and K+1% DONE(addr) in Y = the number of FET(addr,tag) packets between the Kt
'k and K+1* CLR{sddr) in X

(3) For all addr, K, and tag, the number of LOAD (sddr,~-,~-tag) packsts between the

K™ and K+1% DONE{addr) in Y = the number of FET (addr,tag) packets tstween the
K™ and K+1% CLR(sddr) in X

(4) For all addr, K, and tag, the number of LOAD*(addr,-~,--teg) packets between the

K™ and K+1% DONE(addr) in Y = the number of FET*(addr,tag) packets between the
K™ and K+1* CLR(addr) in X

) For all addr, J, and K, the J'* LOAD'¥)(addr,--,~-,--) in ¥ Is
LOAD % addr,data,ref+D,~=), where the last UPD(addr,---) before the J™
FET(*)(addr,--) in X is UPD(addr,data,ref) and is preceded by I FET*Naddr,--)
packets, and D = {number of LOAD*(addr,~-,~-,--) packets} - {number of LOAD™

(addr,~-,-=--) packsts} among the 1+1% to J*" LOAD'®)(addr,~-,--,--) psckets in Y.

W AR

AT ¥
PRI L

]

r,.,ff-"wﬁ'v:‘:w&*?ﬁﬁff{f@?

w5 r

B RV

BT ety

64

oo

famuser

1t Y is input to usar and X is output, X € f . een(Y) if

(1) For all addr, either the number of CLR(addr) packets in X = the number of
DONE(addr) packsts in Y, or glse there is one mors CLR(addr) in X than DONE(addr)
in Y, and thers are no FET ‘*)(addr,--) or UPD{addr,--,--) packets after the last
CLR(addr) in X,

(2) For all addr, for any UPD(addr,----) in X, the number of FET{*Xaddr,--) packets
precsding it is < the number of LOAD'*Xaddr,--,--,-) packets in Y.

3.05 IMPLEMENTATION OF M4 USING A RANDOM ACCESS DEVICE

Implementation of MM with a random access device is quite easy. Assume the
memory Is two arrays, mem-data and mem-ref, containing the data and reference count for

sach word, respectively. The following program will suffice:

process starts at A

input port CMDI

output port RS0

array mem-dats, mem-ref

var command, addr, data, ref, tag
A: command := RCVYPKT(CMDI)

if command = FET(~~,--) then | FET - return LOAD
lat command = FET(addr, tagh
XMTPKT(RESO) := LOAC{addr, mam-dats(2ddr), mem-ref(eddr), tag)

glse if command = FET™(~~--) then | FET™ - decrement ref and return LOAD™

Ist command = FET (sddr, tagh

PR e i&%gﬂi

SR PN

65

mem-ref(addr) := mem-ref(addr} - 1;

XMTPKT(RESO) :» LOAD (addlr, mem-data(addr), mem-ref(addr), tag)

else if command = FET*(--~-) then | FET* - increment ref and return LOAD*
let command = FET*)addr, tag)

mem-ref(addr) := mem-ref(addr) + 1;

XMTPKT(RESO) := LOAD*(addr, mem-dats(addr), mem-ret(addr), tag)

else if command = UPD{~~,----) then | UPD - update memory
commend = UPO(addr, data, ref);
mem-data(addr) 1= dats;
mem-ref(addr) := ref

else | CLR - retirn DONE
let command = CLR(addr);
XMTPKT(RESO) := DONE(addr);

goto A

66
3.1 HORIZONTAL INTERCONNECTIONS OF "MM" SYSTEWS

<,
23
A0
¢
%
fon
Vi
i
¥
7
o,
%
4
w
B
K3
.

The functional specifications of MM and its user have the useful properties that:

- e
B AN LY id

(1) fn and fumuser 9Te invariant under reordering of command packets
referring to different words. That is, such a reordering will not affect the

legal responsas from MM, nor will it affect the legality of the commands
from the user.

referring to different words.

(3) t4 ond faiuser *re invariant under reordering of LOAD'®} packets for the

same word between any pair of DONE packels for thet word, assuming the
refarence counts are suitably adjusted.

(4) the behaviorsl properties of MM and ite user are completely independent
for different words,

Propsrty (2) makss it possible to conniect MM systems and their users through

distributors and arbiirators, and still have an M system. The following connections are
possible:

ESSREs
% Qa5
Ty ey

T S U AP R

57
Multiple memory connection

CMOI RESO

MM

1
¢
i
I
1
'
]
|
1
!
'
|
!

If each of the small boxes realizes fum (contingent on its user realizing
fm), the large dashed box realizes 'WUSER for a larger address space. If the user of the
farge dashed box realizes flMBER + @ach small box’es user realizes f . \rp -

For this to work the distributor and arbitrator must handle address fields
properly. If thers are 2N small MM units, tha address field of the interccnnection is N bits
longer than that of the units. The distributor picks out N bits of all incoming address fields
end usas them as the cutput port numbers. (For interleaving purposes, it might be most
effective to pick out the least significant bits.) Those bits do not appear in the address fields
of the packets that are sent to the MM units. The arbitrator inserts the input port number of
esch incoming packet into the address fisld in the same positions as the bits that ware
removed by the distributor.

‘This connection is one of the methods by which the transaction rate can be
Increased. Random access memory devices have the property that every read or wrife
trensaction ceuse: o device to becoms busy for soms period of time, during which it cannot
hendle any other (ransaclions. For example, a MOS RAM might be busy for 500 nanoseconas
during avery transaction, and therefore be able to handie 2 million transactions per swvcond.
Putting » FIFQ huffer an it will incraase Ro tatone - (55 1 16 was Setmsd provivusiy), bul
its transaction rate stays the same. The only way to increase the data rate is to use many
memory units. 1f a distributor can handla 64 million packetls par secona on its inpat port, and
an arbitrator can handls 54 million packets per sacond on its output port, it might ba

reasonable to use 32 MOS RAM's, sach .0 o saparate MM unit. These are connacted to 2 32

TR STV TS SR TR SN R e A TP T TR R T o]

Rk B

MRS AR T G

M e

e e X mares

s
20ex8
Sy

%
e SE ot

o5 u
A

. —_"
e R PTN TNERITIAR R b fisl ;5‘%%

62

port distributor and a 32 port arbitrator. The sverage rate at which packets come out of
each port of the distributor is 2 millicn par second, which is the rate at which individual units
can handle them. Assuming the commands are uniformly distributed over the address space,
this interconnection will handie 64 million transactions per second. The retrieval delay for
sach item will still be 500 nanoseconds, but that is an unavoidable consequence of the
memory technology uszd.

For this interconnaction to work effectively, the latency of the individua! MM
units, or the output latency of the distributor, must be at least one, and preferably more. If
the MM units and the distributor all have latency zero, the distributor will be unable to
acknowledge a command, and hence unable to get the next one, until the command has been
completsly processed by the MM unit. This would dafeat the purpose o‘f using muitiple units,
In practice, the latancy might be somewhat more than one, in order to maintain a transaction
rate near the maximum in the preserce of nonuniform statistical frequency of commands for
each unit. This cen be accomplished by placing & small FIFO buffer bstwsen the distributor
ard each MM unit,

69

Multiple user connection

MM

Thie ie just like the multinle memory sonnscticn, but with the roles of MM and the user
axchanged. if the solid box realizes fw , sach of the interfaces at the top of the diagram
roalizes f.,, for a smaller address space. 1f each of the users of this interconinection realizes
fuuser @ then the collaction of all of them along with the arbitrator and distributor realizes
funager 90 the largs address space.

As in the previous case, the arbitrator must map the input port number into a
larger address field, and and distributor must remove the correspouding part of the address
field and use it us the output port numbar. Each of the interfaces at the too of the diagram
realizes an gauivalent sddress space, and each uses 2 different sulise: of the memory space
contained in the actual MM unit,

This connection would be used if there were several users, each presenting
commands at such a slow rate that one memory module could handle all of them. Such a
situation could arise if several cache modules are used which have a sufficiently high "hit"

rate that tha rate of memory raguests arising from cache misses is low.

70

3.2 VERTICAL COMPOSITION AND THE CACHE MODULE

In the section we describe the cache module "CM* which connects to an MM

:" system and, so0 connected, reaiizes an MM system with the same address space.

A 17 A e :

¢ X CMOI RESO |

: | !

' !

,f.: ' :

P ' 1 '

3 : MEMO MEMI .

“ 5 cMol RESO .

oy : MM !

g"’ It the sma]l_ﬁsx-l;l;eilgd-W;‘s}l‘iz—e; ?.;,; ,—the large dashed box realizes fom -
f If the user of the large dashed box realizes fwusm , the user of the small box reslizes
r{i

: tumnsen -

* Vertical and horizontsl interconnections may be mixed as in the following
3‘

§ sxamples, since in each case the system being implemerited is MM

BRI SN (ORISR

. A

TR

AR

s

S B s |

T S R T Iy T

RN

s L praxe

Si 1 s

71

CcM

>

CM CM
/ S \ 7 3

J

MM

The purpose of a cache is to retain the date of a small subset of the main
memory’s address space, and return requests vor data in that subset directly without reading
it from main memory. Since the cache has much less data than the main memory, it can be
built out of fester circuits and devices without being prohibitively expensive. Hence any
request for s datum that is in the cache (a "cache hit") is answered very quickly. If the cache
Is sufficiently well designed that it has a high hit rate, the overall performance of the memory

will ba nearly as good as that of the cache itself.

A cache must be designed to maximize the hit rate by hoiding those memory
itams that are likely to be addressed. This is usually dons by assuming that the addresses
being used vary slowily with time, and so, when an item is referred to once, it is likely to be
referred to again soon, and should be placed in the cache. Tharefore, when an item is
eddressed which is not in the cache (a "ceche miss"), the datum is fetched from main memory,

placed in the cache, and also returned to the user. Subsequent requests for that datum will
be cache hits.

The size of the "items™ that the cache coniains affect its performance. A cache
for the main memory of a conveniional computer may use rather large items consisting of, for
a2x nple, 8 consecutive words. This is effective because references to memory, especially
wnstruction fetches, tend to be locelized in space. When a cache miss occurs on any woro, a
block of 8 consecutive words is revd from main mamory and 'oaded into ihe cache. Since

rofarences in the immadiste future ara iikely to bas ir: this biock, the it rate is ¢ eased.

TR R P T RS RER

WA G T

TETRATEN T TR,

TR

AT A
2

e e P o

DT TRE A

72

The strusture memory for 2 data flow computsr has no such locality of

reference. Thersfore, the unit of cache organization will be ths individual word,

Placing an item in the cache usually requires removing some other item. The
most popular strategy, and the one that will be used here, is the "lsast recently used” (LRU)
strategy. Each reference to a cache item is noted in some sort of reference table. When
space must be made in the cache for a new datum, the item that has been used least recently,

that is, has gone the longast {ime without a reference, is chosen.

When a write command is issued, the item in the cache is updated
appropriately. In some cache organizations, the item in main memory is clways updated also.
This technique, krown as “write through”, wiil not be used here. Instead, the item in the
cache will simply b. marked as having been modified. When an item that has been modified
must be displaced from the cache, it is first written into main memory. This method has a
lower volume of commands going from the cache to mein memory than the "write through”

method.

It is crucial that the cacha be able to determine very quickly whether or not it
contains a given word. Since its memory space is much smaller than the full address space, it
must store the ‘ull address with each item. When a command is received, the cache must be
-aarchad for an item with the given addrees. It is important that the search be conducted

quickly,

A popular method of organizing the cache for rapid searching is the "sat
associative” memory [12]. The cache is organized as an array of columns and rows. The full
address space is similarly organized, with the same number of c¢olumns, and a presumably
much greater number uf rows. Each item in the cache is constrained to correspond to the
same coiunn in the full address space as its owr column in the cache. Therefore, to search
for a given item whose fuil address is known, tha address is separated into row and column.
If it is in the cache, it must be in the same column as its column wddress in the real memory,

50 L, thet column of the ceche nasd te ba seurched. Furthermure, only row sddresses nead

73

to be stored in the cache slong with the items. The column addresses are implicit from the
position in the cache.

This organization works well for a suprisingly small number of rows in the
cache. For example, the main mamory cache on the 18M 370/168 computer has only four
rows. (The number of rows is referred to as "cache depth”) To determine whether a given
item is in the cache, only four address comparisons need to be made. These can easily be
done cimultaneously.

The column number of & werd in the full address spacs is typically taken frum
the low bits of its address. The row number comes from the remaining bits. This allows

consecutively addressed items to reside in the cache in adjacent columns of ona row.
Example: Suppose the full address space contains 4096 addresses, and
addrasses consist of four octal digits. There are 8 columns, and the low digit of the address

is the column number. The cache depth is three.

column number

row address 551 550 543 504 444 425 4256 425
data A 8 c D E F G H

row addrass 412 417 447 313 314 315 270 241
data { J K L M N ¢ P

row address 242 242 242 242 246 271 365 413
data Q R S H U A w X

The cache holds the item with address 4472, with uata "K™. Whan a command is

reseived raquasting the contents of location 4472, the address i divided into the row (447)

B R

TR R B LT

et

P ST T

ST

=T

e

R 7 T

TR SR R RCTIE R

Ny
a1

gAY
RS

—— ey A o

B o o .

e anpe g PN
I

K

1

74

and the column {2). Cclumn 2 of the cache is then searched for 447. It contains 543, 447,
and 242. 447 is compared with these thres numbers simultaneously. It matches the second of
them, so the data sssociated with it (K) is returned to the user.

When a new item is to be put into the cache, its column number is known in
advance, so only its row must be determinad by searching the column for the !sast recently
used item. For example, if an entry for 2124 must be created, column 4 is searched. If the
least recently used item is 314, it is removad. If its "modify" bit is on, an UPD packet is sent
to main memory, containing the address (3144) and the data (M). The row address is then
changed to 212.

The determination of which item in a column was least recently used can be
made by some simple scheme such as keeping a counter along with the data for each item.
Whenever any reference is made, that item’s counter is set to zaro and all others in its column

are increased by one. The ieast recently used item is the one with the highest count.

Because ®ach operation in the cache involves axamination of an entire column,
the cache memory itself should be organized so that each column is a "word", that is, the
antire column is read or writhen at once.

3.2.1 DESIGN OF CM

The functional specification of CM is very simple: it must realize f,,,, through
its "top” peorts and realize frmuser through its "bottom” ports.

1
5
b3
B
)
5
e
£
£
e
o
55
b
¥,
'
¥
N
v
o ¥
I
bt
kS
‘;
%
i
¥
{
5
%
b
z
%.
;
:

ey

75

fom

If (CMDI, MEMI) = input ports, and (RESO, MEMO) = output ports,
(RESO, MEMO) € f. (CMDI, MEMI) if

(1) RESO € f,,,(CMDI)
(2) MEMO € fy ore(MEMI)

An implementation of a system realizing feu will now be given. Each word of
the full address spuce is in one of eiaht states denoted N, P, P*, Q, Q, R, R, and T.

N - The word is not in the cache at ail. (Since tha cache is much smaller than
the full address space, most words are in this state at any instant.) There
sre no pending commands from the user to the system. There are no

pending commands from the cachs to tha main memory,

P - Space has been reservad in the cache for the word, and at least one FET'®
has been sent to main memory, but no LOAD'® has come back. One or more
FET(*)/LOAD(*) transactions are pending to the cache. Exactly the same

transactions are pending to the main memory,

P - Same as P, hut a CLR packet has beon receivad from the user. One or
more FET(*)/LOAD(*) transactions, pius a CLR, are pending to the cache.

The same transactions without the CLR are pending to the main memory.

Q - The first LOAD'® has come back from main memory. A CLR packet will be
sent as soon as main mamory is ahla to arcant it Tern ar mara
FET(*)/LOAD(*’ transactions are pending to the cache. Exactly the same

transactions are pending to the main memnry.

Y

TR E Ry
p

<
3
E'w
b,
13
I

TR A R R BN QAT LHTE T aay T

;s i

- -- - T TPes o T
s e R IR R SRR

g, 3,

S

76

Q - Same as Q, but a CLR packet has heen received from the user. Zero or
more FET(*)/LOAD(*) transactions, plus a CLR, are pending to the cache.

The same transactions without the CLR are pending to the main memory.

R - The word is in the cache, but some FET‘*’ILOAD“’) trancactions may still be
in progress in main memory. A CLR packet has been sent to remove them.
No CLR packet has been received from the user. Zero or more
FET‘*)/LOAD(*) transactions are pending to the cache. The same

transactions, plus a CLR, are pending to tha main memory.

R - Same as R, out a CLR packet haz heen raceived from the user. Zero or
more FET(*)/LOAD(*) trensactions, plus a CLR, are pending to the cachs.

Exactly the same transactions are pending to the main memory.

T - The word is truly in the cache. There are no pending transactions to the

cache or from the cache to the main memory.

The normal states for a word are N or T, depending on whether the word is in
the cache or not. In state T, all commands are acled upon immediately by the cache without
any communication with main memory. In state N, any commend from the user causes the
word to undergo trensitions that sventually resull in its being in state T. If the command is a
FET‘*’, the word must bs read from main memory, and the slute goss through some gf the
intarmeadiats states. If ths command Is UPD, the word is created ia the cache in siste T. In
sither caso, some other word may have to be displaced, going from staiz T to state N If the

"modify"” flag for that word is on, an UPD packet is sent to main memery.

The specifications of MM and ils user require that the user accept ali result

manbabe fvam M2

LML (6 Anl ramiivad in cnrant sammande whan tha racalbe Af neasiane
oo T AVEAE e W g G e e w3 s e ww - - - P - ~ -

commands have been accepled by the user (aliheugh 2n ettcient implementstion of M might
allow many commands 10 be in progress at once) Thergicra, n order o avoud a deadlock, CN
must accept packats from main memory, at MEMI, sven o, main memury refuses to accept

any further commands through MEMO. CM somelimes wust wud for memory to accspt a

BN IR

B o 3kl Sl AR SO

o g

77

command. While it is waiting, it may refuse to accept further commands at CMDI, but it must

always be willing to accept packets at MEMI. CM may acsume that any nacket sent through
RESO will be accepted.

The reason why CM allocates a cache cell for an item and puts it into state P as
soon as the first FET'*! command comes from the user, is to avoid a deadlock, that is, a
situation from which the system cannot proceed. If it simply sent the packet out through
MEMO and did rot zllocate the cache cell until the first LOAD'® packet came back, it would
use its own space more efficientiy, but would be in danger of desdiock. (P cells are uselsss,
since thsy do n&t contain data)) This will be explamned In saction 6.0.

In the following description of the cache algorithm, the manipulation of the
counters to daterminc the ieast recently uied item ie rot shown,

STATEN

FET‘*’(addr, tag) a’ CMDI - Jreate space in the apptopriata cache colur .
Cither s an ampty space (this situation can only arise when the syzism is
fire’ started) or romove the l-ust recent used item in state T. if no item
is In state T, wait until one enters stata T, not accepting _ay packeis on
CMDI while waitir ;. {ltems in other states wih progress to state T., When
the item to be removed is found, wrila it out if its "modify” fleg is on, by
sending an UPls packet at MEMO. If main memury is no. accepting r ackets
al WEMO, wst until it does. Than create a new item ir the cache with the
given address, "modify” = 0, stats « P, Luave ths data and refsigency count
fields unspscified. Also, send a FET®) packet, idsntical to the incoming 0.0,
out through MEMO, to fetch the date.

CtR(addr) at CMOI - send DONE(addr) st RESO.

UPD(addr, data, ref} st “MD] - Create spsce in the cache as far FET!®) perhaps

ssnding ¢n UPD packst 1o mamory Then crasia & cew em i the tachs

TR B TR e TR

g

At N

AT

A S R

o M e o -

78

with the given addrass, "nodify" = 1, dats and reference count from the

command, and state = T,

LOAD'®) or DONE at MEMI - can't occur because no transactions are pending in

main memory.
STATE P
FET®)(addr, tag) at CMDI - Send the same packet at MEMO.
CLR(addr) at CMD! - Change to state P'.

UPD(addr, data, ref) at CMDI - can't happen, since transactions are pending in
the cache.

LOAD(*)(addr, data, ref, tag) at MEMI - Deposit the data and reference count
into the cache word, and send the same packet out at RESQ. If the main
memory is accepling commands, send a CLR(addr) at MEMO and change this
cache item to state R If not, cliange to state Q.

OONE at MEMI - can't happen, since no CLR has been given to main memory.
STATEP

FET'*), UPD, or CLR al CMDI - can't happen, since user has a CLR/DONE

transaction pending.

LOAD*)addr, data, ref. tag) at MEMI - Deoosit the data and reference count
into the cache word, and send the same packet out at RESO. If tha main
memory Is acepting commands, send a CLR(addr) at MEMO and changa this

cache item to state R'. It not, change to state Q"

e rh S e

79

DONE at MEMI - can't happen, since no CLR has basn given to main memory.

STATEQ

Note: CM does not accept any command at CMDI whanever any item is in state
Q. Q is simply a temporary state that is waiting to send a CLR(addr) out through
MEMO and go into state R,

FET(*), UPD, Gr CLR at CMDI - can't happen, since cachs is not accepting

” commands.
LOAD'E at MEMI - same as state R.
DONE at MEMI - can't heppen, sinca CLR has not been sent to main memory.

Main memory becomes able to accept @ command - Send CLR{addr) through
MEMO, change to state R.

STATEQ’

R TV

Note: CM does not accept any command at CMD: whenever any item is ini state
Q. Q is simply s temporary state that is waiting to send a CLR(addr) out
through MEMO and go into state R'.

FET(*), UPD, or CLR at CMDI -~ can't happen, since cache is not accepting

commands,
LOAD'®) at MEMI - same as state R
DONE at MEMI - can't happen, since CLR has not been sent to main memory.

YMsin wmemOry becomes able 1o accept @ command - Send CLR(addi) through

H
i | RV DR Ry 5 s A s s o e £ et

80

MEMO, change to state R,
STATER
FET‘*)(nddr, teg) at CMO] - Upiate the reference count in the cache, and set

the “modify” bit it thu packet was FET™ or FET*. Send LOAD'*Naddr, data,
newref, tag) through RESO, where data and newref are current contents of

the cache. Note: at the insiant this happens, there may still be
FETELOAD'®) transactions pending in main memory. If so, those FET(Y)
packets wars earlier than this one, but the corresponding LOAD'® packets
won't be returned until later. This is the circumstance which causes the
? i general system MM to occasionally return LOAD® packets in an order
S different from thet of the FET® packets.

UPD(addv, dats, ref) st CMDI - Updete the cache, set the "modify” bit. Note: if
an UPD packet is recsived while in state R, we know from the rules for

MMUSER that rio FET!*/LOAD'™) transactions are pending in main memory.

CLR(addr) at CMOI - Change to state R".

LOAD(*)(:ddz', dete, ref, tag) et MEMI - Ignore the “ref" field in the packet.
Increment or decrament the reference court in the cache it the packet is
LOAD™ or LOAD*. Do not set the "modify” flag, since main memory already
knows about the reisrence count change. Sand LOAD(*)(addr, data, newref,

C e o e

teg) through RESO, where newref = the updatad reference count in tte
cxche,

JONEtaddr) at MEM! - Change to state T.

g
R

S aSREES

. x : TIPS YRR
,‘ff“&“‘.}‘!ﬁ ety Loeot ol N Fal g o LR e h
B I AR, S TR Vi R e N Ol LTS L N

5 Ay

g e Y

81

STATER

FET‘*'), UPD, or CLR at CMD! - can't happen, since user has & CLR/DONE
transaction pending.

LOAD'®) ot MEMI - same as stats R.

DONE(addr) at MEMI - send DONE(addr) through RESQ, change to state T.

STATET

FET‘*’(addr, teg) at CMD! - Update the reference count in the cache, and set
the “modify” bit if the packet was FET™ or FET*. Send LOAD'*)addr, data,

newref, tag) through RESO, where data and newref are current contents of
cache,

UPD(addr, data, ref) at CMDI - Update the cache, set the "modify" bit.
CLR(addr) at CMOI - Send DONE(addr) through RESO.

LOAD'®) or DONE at MEM! - can't happen, since there are no panding

transactions in main memery.

3.2.2 PROOF OF CORRECTNESS OF CM

A prooi of CM's correctness is generally similar to that of the system MEM
given in saction 2.0.3. The memory state required in the specification is the contents of the
lack 1IDN) mast=t I the Wiput fusiory. Une must snow (nat, for a ceil 1n states Q, Q', R, R, or T,
the data in the cache itsalf is the same as that in the last UPD packet at CMDI, and, if the
modify bit is off; this data is in main memory also. For states N, P, and P°, the correct data is
in main memory, the! is, the last UPD at CHDI has the same data as the last UPD at MEMC.

Thoss propsrties must be shown {2 be preserved for all stale iransitions, and i must Le

82

shown that all legel FET™® commands wil got the correct data. Furthermore, the effect of
reference count modifications vesulting from FET* and FET” commands must be taken into
sccount,

SEE A b

ZRANRE R RS

H

TR

wf‘:fi‘;

PRI

P

Tt STTEETETNT

s

83

4.0 IMPLEMENTATION OF MM USING A "ROTATING" DEVICE

"Rotating” memories such as charge coupled device (CCD) or "magnetic bubble”
shift registers, or magnetic disks, are rightly considered to be essentially unusable for the
main memory of a computer because of their excessive retrieval delay. In a data flow
computer, total transaction rate is as important a criterion as retrieval delay, and so the
disadvantages of these devices largely disappears, making them perhaps sconomical as a mass
store. On the other hand, further improvements in RAM techriclogy may render these shifi
registers obsolete for most applications. This section is predicated on the assumption that

CCD’s or bubbie memories will be economical and useful in tha packet memory system.

In a rotating memory, the data is structured in a ring which “rotates” past a
“resd/write head”, Equivalently, one may think of :t as a fixed ring and a pointer rotating
around the ring, with momory transaciions permitted only on the cell currently pointed to. If
the addresses of words correspond to fixed places on the ring, it is possible to predict when
sny given cell will be pointed to. Commands from the user can be stored in a memory
somewhat like a queue, sorted by position, so that the pending transaction at the head of the
queue is always (or nezrly always) the ons that the pointer will reach next, This will meke
optimal use of the availzbility of data from the CCD.

There sre a number of CCD architectures currently in use. In the “line
addressad random access memory” (LARAM), only a small part of the device shifts at full
spead at any one time. The rest shifts and recirculates at a much lower speed in orcer to
conserve power. The intent is to make the device behave somewhat like a random accass
memory. To retrisve any one item, one finds the section in which that item is stored, and
directs the CCD to shift that section at high speed until the desired item is found. Whie this
is happening, the other sections are shifting much more slowly, so this architecture is not
eificient wnsn many Items are being sought at one time. i1 s therefore not suitabie for (ne

type of packet memory system being considered hers.

Two other ‘ypss of CCD's are the “serpentine”, whicl: is simply a long shift

ragister (it "snakes® back and forth on the IC chip), and the "serial-paraliel-serial®, which is

o dam ae

(TR

S el s Sl

£

i

LR

TRERTTR T, 1.«7‘\‘"?*?7:';%4 £ SEAENGE TN

M C A

84

simply a collection of interimzz:d shift registers. These two types differ only in engineering
specifications such as data rais and power consumption. They both bshave like long shift
registers, and hence are suitable for the type of memory under discussion.

There are a rumber of implementation considerations that must be taken into
account in designing a rotating packet memory. For example, a number of shift registers, one
for sach bit of a data word, may be used, so that a new data word comes into position on
each clock pulse. On the other hand, a single shift register might be used, with each word
stored serially, or any arrangement betw:zen these two extremes can be used. One might also
use an unusual correspondence between : :iress and shift register position. Al of these
considerations are irrelevant to the structura heing considered, so we will assume the memory
is & ring of full words, ordered by address, with address zero following the highest address,
and the pointer scanning the ring in order of increasing address. Any other implementation is
equivalent to this.

In the following, the memery wiii be referred tG ac the “CCL", regardless of
what type of device it actually is.

Pending transactions (ihat is, packets received at CMDI) nre storea in the
transaction list (TL), which is presumably much smaller than the memory itseif. The TL is
presumably realized with a random access memory devics. In order to avold moving data in
the TL unnecessarlly, it has a ring structure just iike tha memory. Transactions are placed in
the TL at or near the same angular position as the posilion in mamory ot the word to 'hich
they refer. Since ithe TL is a smallar ring than the memory, each address of TL corresponds

to many consecutive addresses of memory:.

Let €X» ba the function mapping addresses in the entire address space into
the corresponding address in the TL. This is calied the hash fu.iction for reasons that will bs
SXplIINBeo 18(er. AL 1S just (ne intager part Of (N8 quotiert O! X alviasd by e rauo i
memory size to TL size. In a realization in which all sizes ar powers of two, €X» is just ths

appropriats number of high order bits ot X,

8

When a command is received for address X, the command packet is placed in
the TL at address . €X», or the first free address thereaftar if €X» is full. Assuming s
uniform distribution of addresses appearing in commands, the TL shouid be uniformly filled.
As the memory pointer rotates tﬁrough the memory, another pointer, maintaining about the

same angular position, rotates through the TL, picking out the ne:t transaction t.o perform.

The TL is vrganized much like the "ordered hash table” devised by Amble and
Knuth [2] , with modifications to allow for its circularity and for the fact that items are being
removed fro.n it. In an ordered hash table, each item has.- a hash address. It is placed in the

table at its hash address or in the contiguous block of items after the hash address. This

g | A R T E R A N TR S0

block is in increasing order of data valus. This ordering makes it pessible to determine

whether an item is in the table much more quickly (han in a conventional hash table.

T T R R T AR AR

LTS T

Althcugh ordared hash {ebles are intended for entirely diffsrent applications

than the transaction list gf a packet memory, the concept is well suited to this application.

The “vailue” of an item in the table is tha word address appec.ing in the pi.ke!. Let a(P)

TR,
L P IA,

i denote this address for packet P, and call it the "CCD address”. The “hash address”
? | corresponding to 2D address X is just €X., defined earlier. (Hash functions are usuaily
E designed to be random, but that property is not desirable here.) The hash address of packet
2 P is therefors <a(P)>.
E‘ Because the TL is a ring instead of a linear list, a different definition of order is
i: needed. The concepis of "greatsr than" and "less than" are replaced by "clockwise from” and
'?} "counterclockwise from”. Since any item is both clockwise and counterclockwise from any
? other item, the order of two items must be defined relative to a third. This is done through
i the use of intervais denoted in ordinary mathematical notation. [X, Yjis the interval from X
cleckwise to Y. If X < Y, it has its customary meaning. If X > Y, {X, Y] is the set of numbars
from X up to the highast addrace, and then fram 2205 4 4o Y. "Open” anc "hali open”
r f intervals have their customary meaning, that is, [X, Y) means [X, Y] exclusive of Y, etc. [X, Y)

3 and [Y, X) are clearly complements of each other if X = Y,

] The ordering of hash addresses and word addrosses is expressed in tarms of

FET R TR W R A WSS SRR TR

FTTTTR T Tpley o

86

whether or not an element is in an interval. 7 € [X, Y) means that if one starts at X and
moves clockwise, one reaches Z before Y.

The general rue for maintsining order in TL is that, it one goes clockwise from
sn itam’s hash address to the item itsalf, one will not pass any empty cells and will pass only
“smalier” items, that is, items whose hash uddresses are counterclockwise from this one. This
is best illustrated with a diagrem. Let CCD addresses be two octal digits and hash addresses
be one digit. The hesh function picks out the first digit. The transaction list has 8 cells end is
drawn g3 a circle.

73

Cells O and 6 are empty. Cell 2 contains a racket with address 16, whose hash
addrsss is 1 but was displaced becauss cell | is full.

It is possible for the transaction list to contain several packeis referring to the
same CCO address. Specifically, the following configurations are possible:

One or more FET() packets. Wnen the CCD poiniur reache the arpropriate
address, ite data wiil be road and sent baci to the user in a seyuence of
LOAD(*) packats,

One or more FET () packets, folluwed by a CLR. When the CCD pointer reacnes
the approgriate address, tha LOAD“‘) peckets will be sent out, followed by

R e P I

87

8 DONE packet.

A single UPD packet. The data will be written into the CCD when the
appropriate address is reached.

No other states are possible. This is because it is a violation of f,,, cro to send
an UPD packet when there are FET () or CLR packets pending. If an UPD is éivon when a0

»35%? Eﬁﬁ@ N N T B
AR o
Arts o &

UPD is siready pending, the new one simply replaces the old one. If a FET®) is given when
an UPD is pending, the data is taken directly from the pending UPD packet and returned in &
LOAD') packet.

2

Intuitively, the rule for & well formed transaction list is thast the lines
progressing clockwise from a cell to thoso items with that cell’s hash address must never
cross each other or pass over sn empty cell. If an item with CCD address 43 were placed
into cell 6, this rule would be violated, since the line from 4 to 43 would cross the line from 5
to 55. The insartion algorithm must instead put the 43 into cell 5 and move the 55 to cell 6.
Furthermore, ail items with the same hash address must be ordered by CCD address. In the
example, 16 is clockwise from 11.

A TR T R AR

To insert an itera, start st its hash address and search ciockwise until an empty
cell or & celi containing an item with higher (more clockwise) CCD addrass is found. In the
former case, insert the new item. In the latter case, insert the new item after making space
i for it by pushing the old item, and all those contiguously following it, one space clockwise. In
the example, insertion of item 10 would require pushing 11, 16, 25, 32, and 55 clockwise.

¢ oy

Insartion of 42 would require pushing only the 55.

T T TR T T "’:?'%‘.F‘?'}”,«“‘aii?ﬁ:ﬁ‘? B
A i
s

; % While incoming command packets are being placed in the TL by the above
: g procedure, packets are being removed and sent 13 the CCD memory. This is accomplished
; through the use of a transaction list pointer (TLP) which rotates clockwise roughly in
eynchronization with the CCD address pointer. When the the CCD pointer points to CCD cell
,1 10, the TLP points to TL address 1. Since a packet for address 11 is found there, it waits until

z the CCD pointer = 11, removes the packet from the TL, and performs the indicated operation

R S A B S B B ST AR

88

on the contents of CCD address 11. The TLP is then immediately advanced to the next
position, 2. Since the packet there specifies address 16, it waits until the CCD pointer = 16
and then removes the packet and performs the memory operation. The TLP the moves to 3
and the process continues. .

The removal of items from TL makes it necessary to modify the rules for a
weli-formed transaction list. If 16 is remaved from the example list, the line from cell 2 to
item 25 passes through an empty cell, which would violate the condition given previously.
Therefore, the region from which packets are removed is declsred to be the "removal region”,
and it is permissible for the line from an item’s hash address to the item itseif tc pass through

the removal region. The removal region is delimited at its counterclockwise end by the
“ramoval pointer” RP, and at is clockwise end by TiLP. After removing 11 and 16, the example
looks like this:

£
/i
"
2N
B
3
e
b4
o
N

g
o
%
s
3
s
23
g

S,

TR AR

R T L PR RS L

Qe

89

el

Whenever an item is removed, RP is set to the hash address of that item. In

the example, aiter 25 is removed, RP '/ill be set to 2 (25's hash address), and TLP will be
sdvanced to 4.

The rules for a well-formed transaction list can now ba given formally:

(1) ¥ j, k € TL address spacs, if j » k and TL(j) » empty a¢ TL(K),
[€(TLND,j] ¢ [€a(TL(KDD N]
(That is, the interval from the hash address of an item to the item itself is never
contained within the corresponding interval for another item, i. e. the lines never cross.)

() Vje[RP,TLP), TL(j) = empty
(That is, cells in the removal region are considered to be empty.)

(3) V j, k € TL address space, if TL(j) =empty # Ti{k) and je¢[RP,TLP),
j [€{TL(RNY , k]

H g3 o - dmwa b -
(That is, the intarval from iis hach address of 2 itam to ths Ham itszlt doss

not contain any smpty cslis not in the ramoval region.)

(8) V j, k € TL address space, if €a{TL(ND = €a(TL(K)> and je€[€a(TLRND k],
then a(TL(k)} 2 o(TL(j))

st 100 N M A R B R

agBs

G el et

PR PR PR

O
N ,’gggfﬁ’&'f
.

.

N LS SRR SRS OB B e e R TSR R TR R
. - ST

S
A

E AL B

W T T

a xiu EE R e

S N

k4

g “ljjf 2t

AERE Y
. ;

N

90

(That is, if two items have the same hash address, the more clockwise one has the higher
CCD address, i.e. all the packets having one hash address are ordered by CCD address.)

(5) V j, k € TL sddress space, if j € [€o{TL(ND , k) end &(TL(j)) = a(TL(K)),
thenVme[j,k]l aTlim)) = &TL().
(That is, all items with one CCD address are adjacent. This is necessary to be sure that,
when a sequance of adjacent FET(*) packets and a CLR are found, it is possible to
return the LOAD‘*) packsts followed by @ DONE, with no danger that there are unseon
packets elsewhere referring to the same CCD address.)

(6) V j, k € TL sddress space, if j €[€a(VL(ND , k) and o(TL(j)) = &(TL(K)),
then TL(j) was placed in the table before Ti(k)
(That is, the items with the same CCD address are ordared by age, the youngest being
most clockwise.) This property makes it possibie o return a DONE packet as soon s
CLR is encountered in the removal scan, since the packets are ancountered in the

same order as they were originally received,

The insertion aigorithm requires soms care when passing through the removat
region. If the scan starts outside of the region snd then enters the region, the item is placed
in the first cell, and the region is shortened by one so that that cell is no longer part o! the
region. If the scan begins in the region but not in its first cell, the scan skips over the region
and starts after its end. If tho scan begins in the first cell of the region, it skips to the and if
its CCO address is greater than or equal to that of the item just past the end. Otherwise, it is
insertad in the first celi and the ragion is shortened.

s
PRSI IU S TR

PRUPIRSE

R et o T T A e e e B e - e -

pm
5 T
3

91

T B o N N S A g §EE p;.‘a@’;?-.g‘
A imdey

removsl region

To inserl: Do this:
. 22-27 Fut at 3, set RP := 4
: 30-33 put at 3, set RP = 4
32-35 : put at 6, push *-s 36 and 43
? 36-42 put at 7, push the &3
i 45-77, 00-07 prct at 0
- i Tha sigorithm for inserting an item into the TL is given in appendix 111 A, if th-
«‘ TL slready contains an UPD packet for the same address, it inste 3 performs the indicated
‘ action, perhaps modifying the UPD packet and parhaps iransmitting a packet at RESO.
The removal algorithm is somewhat simpler. The Tl item >ointed to by TLP is
F next to be removed, The C.D pointer indicates the current item availakle at the CCD output.
From the standpoint of the algorithms for handll:ig the TL, the CCD pointer must be considered
{o be inexorably advencing under control of an external agency. The external agency is the
clock centrolling the shifting of the CCD shift registar, or, in the case of a magnetic disk
memory, it is the information being read from the disk’s timing tracks.
Tha fact that the CCD pointar is synchronized to external events means that it

0

. e s .. et s s A e
e ol G, matTerd s RS SR A O

o

S8 AR

TR

R

NS ,»v?,él Ty

W T T e W SRS

LA

RS T

92

cannot be integrated fuily into a system using the packet communication principle. It must be
considered external to the pucket system, and some synchronizers or arbitration devices must
be used in the interface. The design of such an interface is a common problem of digital
system design, and is beyond the scope of this thesis. We will assume that the interface
between the synchronous memory device and ine packet system consists of ports CCDI and
CCDO. Every time the CCD advances to a new address, an ADDR packet containing that call’s
address and data are sent to the system through port CCDI. If the system fails to
acknowledge the ADDR packets fast enough, so that the CCD is prevented from sending one, it
may either drop the packet or wait until the CCD has shifted all the way around to the same
address again. After the system receives an ADDR packet at CCDI announcing that an address
has been reached, it may transmit a WRITE packet at CCDO, giving the address and new dala
to write. If this packet is not transmitted soon anough, it might be too late to write the data
into the CCO. In this case, the CCD shifts all the way around, not emitting any ADDR packets,
until the address is reached again, and then writes the data.

Wasting an entire rotation time whenaver the asynchronous part of the system
can’t keep up with the CCD clock may seem drastic, but it doesn't happen very often.
Whenever an asynchroncus system must communicate with something such as the CCD clock,
there is the possibility that it may be late. However, it is not difficult to design the system
such that the probability of this hcppening is vanishingly smail. If this is done, it is possible
to prescribe drastic remedies when it doas occur, without significantly degrading system
performance.

The above uescription of the interface to the CCD may be somewhat simple-
minded. Many memory devices require that the write command, and the data to e written, be
given oefore the previous data from the vxiu.e address is available. This means that the
protocol whereby the system issues &« WRITE packal only after receiving an ADDR packet
bearing the data might rot be appropriate. In the case of a CCD or othar shift register, the
problem can be solved by having two "taps” on the register: one for reading, and another,
one or two bits later, for writing. In the case of a disk mwmory, the problem is more serious,
and may raquire thet the disk announce sach address slightly bafore the data becomes

svailable. 1he necessary modifications to the asynchronous part of the syslem will not be

SRR RINVER

o e T g AT s el A I r i e St B e R A A RN e SO A TR

L% e ra Rach

trested here.
The rotating memory module then luoks like this:
CMDI RESO
AN
L
L
¢
inserter | remover | memory
l___;'_________, device
| ccoo L

The removal algorithm waits for an ADDR packet at CCDI matching the address
contained in the packet in the trensaction list pointed to by TLP. When found, it performs the
indicated transaclion, perhaps sending a packet cut at RESD. It then sets RP to the hash
eddress of the item which was just processed, which may shorien the remcval region. The
item is then erasad from tha transaction list, and TLP is advanced to the next position. If TLP

now points to an item having the same CCD address, that item is processed also, using the

T IR e IR S SN T S S e

same dats. All transactions giving the same address are handled in this way. Any reference

oo

count changes 28 notad, and tha modified rsference count is written beck into memory with a
WRITE packet at CCDO.

Whan TLP reaches a cell which does not contdin a transaction for the same

© Ayt T toae

address, aither I8 is for a diffarent sddress or it is empty. In the former csse, the sy tem

PRI RPN

%, g
SIS

K
PR
X

A

Tt
e
AW Ty

st

et

N

s

AT sy

9%

waits for the CCD to reach the new address. In the letter case, it sets RP = TLP, destroying
the removal region, snd then advances bath RP and TLP, in step with the ADDR packets that
give the CCD address, until it finds a transaction to perform.

The eigorithe for the rotating memory is given in sppendix 11I B.

wtirend A el v e

P 3o

P mu:.;mw«w;.ma:mj P SUIBRTATESV

95

5.0 STRUCTURE CONTROLLER DESIGN CONSIDERATIONS

In this section we will examine a few of the considerations that must go into
the design of an efficient structure controller.

5.0.1 CHECKING THAT THE CONTROLLER OBEYS F.ppccp

The structure controller never issues an UPD command unless the reference
count is known to be one. Since this is so, thers can be no transactions pending on that cell,
80 the requirements of fymasen Ore met. This is contingent, of course, on the rest of the

computer correctly realizing fmn . A reference count violation by the computer
cov'd lead to an UPD packet being sent while there are transactions pending.

5.0.2 PRECISE REFERENCE ACCOUNTING WITH IMPRECISE REFERENCE COUNTS

In checking that fm satisfies the needs of the structure controller, there is a
point of possible danger that needs to be checked. Since LOAD'® packets may be returned
from the memory in an order different from that of the FET(®) packets, it was shown in
saction 3.0.2 that the reference counts returned from the memory may be unususl, perhaps

oeven negative. Is it possible for this to interfere with the cell management mechanism? The
snswer is no, as long as the following rule is obeyed:

After increasing a reference count (with a FET*), do not pass the result to any

destination until the corresponding LOAD" has returned.

For example, if an instruction ceil indicates two destinations for its result, the
reference count of the rasult must be increased with a FET* before the result is sent to the
destinaticn cells. If one of those cells is a SELECT that issues a FET™ to reduce the refe-ence
count, the FET* must act first, Furthermore, it is not snough to raly on the zero latency
arbitrgtor to ba sure tha FET* gets to the memory before the FET™, Tha FET™ must not be
sont until tha LOAD® srising from the FET™ has returned, This is sccomplishad by noi sending
the result to the destination ceils until the LOAD* has baen recsived.

k

TSI

N

96

It is esey 1o see thet no coll will full to be recisimed that should be reclsimed.
At the time the last "owner” of a cell issues ¢ FET™ to discard it, there are no other
operstions pending on the cell, 50 the LOAD™ pecket thet is reiurned will have the correct
reference count, which is zero.

To see that no cell will be accidentslly recleimed that shouldn’t be, consider a
coll with reference count 2, owned by instruction celis X »nd Y. Suppose X performs a
structure oparation that discerds its copy, 30 that & FET™ is issued. We must show that if ¥
does not discerd its copy, the LOAD™ thet srises from X's o.eration will not have reference
count zero. The only way the reference count could possibly go to zeru is if Y elso cauzus @
FET". Since Y doss not intend to discard its copy of the coll, s FET* must have been issued
first. (That is, “he reference count should actually §o up to 3, then down to 2 and then 1.)

The memory recsives the foliowing sequence at CMDI:
FET (oddr, X) FET*(addr,Y) ;| FEV(addr, V)
The situstion to be avoided is that in which the second and Third LOAD packets are reversed:

LOAD (addr,~-, 1, X) ; LOAD (sddr,~-0,Y) ; LOAD"(addr,~-, 1,Y)

H
i
n By
i ek e o sk i 2, .«.ﬂ:_ﬁj

This cen't heppen, bacause the FET (eddr, Y) is not sent until the LOAD*(sddr,~—,~-,Y) has beer

returned.

5.0.3 MEMORY LATENCY

MM's latency was left unspecified only for the purpose of proving correctness
of MM and its user. When actuaily implement ng a ptsctice! vs:' =° .wanory, it may be
necossary to bulid » high degree of i iancy into 80,49 . du'st ¢ 1 urder *o ¢btein good
performance. For exampis, & "roteting” impiementation of MM using a charge coupled shift
register may be designed to have hundrods or thousands of commends pendin| st one time,

97

aithough its correctness doss not depend on this.

8.0.4 THROUGHPUT AND DISTRIDUTED PROCESSING

" One of the fundamental prirciples of data flow computers is that, if encugh
parailelism exists in the program, s computer be able to run arbitrarily fast for a given logic
speed. To do this, it must distribute the computation and be free of bottienscks. If a data
flow computer could only have one mulliply unit, that would be a bottieneck, since it would
limit the rate at which multiplies could be performed. The data flow concept must not place
any restrictions at all on the number of multipliers that a computer can have (although any
given computer of course has a fixed number). There must not even be bottienecks .in ports
through which packets must pass. [f every multiply oparation packet had to pass through one
input port of an allocator on its way to the multipliers, that would be unacceptable, since the
logic speed places a limit on tha rate at which packets (an pass through a port. For oumﬂo.
it @ port could handie packets 100 times faster than a multiplier could process them and el

packets had to pass through one port, it would mean that no more than 100 muitipliers couid
be usafully employed.

In the case <i simple functional units such as multipliers, it is not difficult Yo
avoid bottlenecks. -=:‘ip'e functional units may be used, and the arbitration and distribution
networks that connect inem to the instruction cells may be designed to be free of botiienecks
and thus mainiain any desired throughput rate [5]. For the same reason, multiple structure
controllers are used, each with its own porls connected to the arbitration and distribution
networks of the data flow computer, Also, multipie memory units are used, because the total

memory transaction rate is greater than can pass through a single psir of CMDI/RESO ports.

It is not possible to compartmentalize the structure operation facilities as can
be done with simple functional units. Connecting each structura controiler o one memory
medule is not correct, because sach structure controlier must have sccess to the entire
memcry address space. The structure controllers must be connected to the memories through

an interconnection network cons'sting of arbitrators and distributors for packets going in each

directior. Command packets from the structure controliers have part of the widress tield

o Bt bk a.;:vsmaaf.ﬁ;m:«}m;awm

!

remcved and used to select the output port of the distributor, just as was done for the
multipie memory connection in section 3.1. In this wey, each structure controlier "sees” the
Uil address space, while sach memory module supports only @ small part Jf the totsl address
space. The command peckels from the different structure controliers are merged in
arditrarore, which append the incoming port number t0 the tag ficld, so that the result packet
will be returned to the correct controder. Packets coming out of the RESO ports of the
memory modules pass through distributors that use the added bits of the tag field, and
orbit-ators that uee the incoming port number to reconstruct the full address.

Interconnection network

D1 removes and A2 inserts
uses part of input port
address t0 select ino address

Al inserts 02 removes and
input port uses part of
Into tag tag to select
(oxcept UPD output port.
packets).

I

The treatment of address fiaids and tag fislds is symmetrical. One could think
ot ali pending structure operations as occurying » “tag space”. Just as each memory module

supporis & smali part of the total address space, each structure controlier supports a smail
part of the total tag space. The job of the wierconnection network is to make the entire

PRI ¢ TR N1

At d X e aRaYia s weatate abLC

L L TREHS SR SRR T AT A MY

Aerte e

A ety 1

address space availabie to esch structure controller, and to make the entire tag space
available to each memory unit.

It is not nececsary for the network to place the distributors befo > the
arbitrators. Such a network would have a size proportionsl to the product of the number of
structure controllers and the number of memory units, which may be excessive. It is possible
to mix arbitrators and distributors in a network in such a way that the size is reasonable but
bottisnecks are avoided.

Because UPD packets do not have a teg field and do not give rise to result
packets at RESO, it is necessary that the arbitrators and distributors carrying packets from
e struzture controliers to the memory modules (those labelied Al and D1 in the preceding
diagram) have latency zero. This is so that, when s structure controller receives an
acknowledge for an UPD packet, it will be gusranteed that the packet has passed through the
arbitrator and is therefore shead of sny packet that may subsequently be introduced into
snother input of the arbitrator. Suppose this were not done: One structure controller might
write on a cell, thereby completing the creation of a structure. When it receives an
scknowledge for that UPD command, it assumes that the structure is compiete, and so it
returns it to the rest of the computer. An instruction cell in the computer, having received
this structure, may fire, causing 8 SELECT operation to be generated. The allocator may send
the SELECT operation packet to another structure controlier, which then sends out s FET
packet with the same address. If there is buffering before the arbitrator that merges packets
from the two structure controilers, the original UPD packet might still be in such a buffer, so
the FET packet passes through the arbitrator first. If this happens, the old data will be read,
rather than the new data supplied by the UPD packet. By making sure ihat the distributor
and arbitrater have latency zero, the UPD packet cannot get stuck in a buffer. When the first
structure controller receives an acknowledge for the UPD packet, that packet is known to

have been accepted by the arbitrator, ind hence it wili precede any subsequent FET packet.

It it is not feasible for the interconnection network to use distributors and
arbitrators that have no memory, it is nocessery to put tag fields in all UPD specification

passing through the retwork. An “"sdapter unit® is placed between the ne*woark and each

PRI RS- ST MR

memory module. The sdapter pssses sl packets through except UPD puckets. Whan it
receives UPD(addr, data, ref, teg), it sends UPD(eddr, data, ref) to the memory and UACK(tag)
back to the interconnection network. The structure controlier does not return a structure to
the rest of the computer until it has received UACK raplies for all UPD commands that it has
sent. Whether such UACK packets are required is 5 yuestion of tha design of efficient routing
networks end is beyond the scope of this thesis.

8.0.5 THE FREE STORAGE LISTS

To maintein just one free storage list would create a bottieneck, so each
structure controlier has ons. Whenever a structure controlisr reeds a word in order to
create @ node, it takes its address from the packs! presented st input port UIDL. (UID stands
for unique identifier.) The structure controlier does rot ask for addresses st UIDI; they are
supplied in an “unending” stream, as fast 2; they sre acknowledged.

The sources of the streams at UIDI are ¢lso the structure controllers, each of
which maintsine a free storage list and sends out eddresses through output port UIDO. Tiw
UIDO ports ara connected to the UIDI ports through a collection of allocators and arbitrators
called the UID network. The purpose of this network is to maintsin a supply of frea cells to
ol controflers, even it some controliers’ free storege lists should run out.

L

1

I AT IR

TR

WA s e e

101
UID network
UNI UNO
(from UIDO) (to UIDI)
arbitrators
UNI UNO
(from UIDO) (to UION)

Eech structure controller, in addition to performing structure operations,
maintaing 3 fres storage list. Whenever «n acknowledge is received on UIDO, it takes a cell
from the list and tranemits it in a UID packet through UIDO. Since a reference count scheme is
used for recovering unused celis, the controlier watches for words whose reference counts go
to zero. Every time it reduces a reference count by issuing @ FET~ command, it examines the
LOAD™ packet that is returned. If it shows a reference count of zero, the word is reclsimed.
This involves placing the word in the free storags list and, since whatever pointers it
contained sre destroyed, reducing their referance counts if their elem bits are off. 1f either

or both of the lstter reference counts go to zero, those words are reclsimed by the same
process.

The procadurs is recursive, and is an unplessant type of recursion beceuse the
completion of esch operation can produce two more operstions to perform. Although the
recursion slways terminates, a huge smount of storage may be required to hold the list of
words that need to have their reference counts reduced. The problam at its worst can be
observed in the case of a large tree, no subtres of which is shared with anything else, whose
root node is discerded. Ail nodes have an initial reference count of 1, so, when each node has
its count reduced, it goes to zero, making it necessary to reduce the coun's of both of that
node's otfspring.

To implement this procadure by simply issuing two FET packets whenever a

et B e i Mot GRS b ol i

o e A P £

Mo A - it

M T

ety

PP S APY o0 TS

SRR

102

word's reference count goes to zero (that is, whenever a LOAD™ is received bearing a count
of zero), would creste an intractable deadiock problem because of the prolifer ation of packets.
Instead, the procedure thet should be used is that only the right offspring of a word should
be treated at the time the word is placed on the fres storege list. The pointer to the left
offspring wili remsin in the werd while it is on the free storage list. The recursion in this
procedure is under control, since only one new operation is crested for every operation that
is completed. When a word is teken from the free storage list, the reference count of its left
offspring is reduced, which may cause one or more words to be reclaimed, before the word is
used.

The memory manegement algorithm is as follows:

(1) Whenever s word's reference count is recuced, examine the LOAD™ packst
that is returned. If it shows s count of zero, put the word on the free
storage iist and, if the elem bit in its right half is 2ero, reduce the reference
count of the word pointed to by thet hali. This may cause this step to be
repested.

(2) Whenever sn acknowledge is received from port UIDO, get a word from the
free stovage list and send the packet UlD(addr, its left heif) through UIDO.
(The contents of the left half sre sent simply to avoid an extra memory
reference.)

(3) Wheneve: a fresh cell iz needad for crestion of a structure node, take the
packet UlD(addr, obj) ot port UIDI and scknowiedge cema. Addr is the
addross of s vew cell. If the elem bit of obj is off, red.ce the reference
count of the addrassed word. This may cause step (1) to be invoked.

103

5.0.6 MAINTAIN™G INTEGRITY OF THE REFERENCE ACCOUNTING MECHANISM

The possibility of an error in the reference accounting and cell management
maechenism is & troublesome problem, because, as explasined in section 2.1.1, it is impossible
for the memory to detect a reference accounting error by its user. Furthermore, the effects
of such an error are unpredicteble, and may show up in completely unrelsted parts of the
computation. However, there are a few things that can be done to minimize the probability of
such an error being undetected.

First, all cells on the free storage list can be marked in some way, perhaps by a
bit reserved for this purpose. Any reference {0 & marked cell other than for the purpose of
removing it from the free storage list is a detectable error. Alss, the free storage list can be
organized in such a way that cells ere added at one end and removed from the other, thereby
maximizing the time that a cell stays on the list once it is put there. If a cell is erroneousiy
reclsimed while o “spurious” pointer to it exists, it will then probably still be on the free
storege list when the sgurious pointer is used, so the error can be detected.

Angthor way of checking integrity of reference counts is to conduct sn “sudit®
of the entire computer. This can be done at the end of the computation, and i any point
during the computation. The host computer must disable all instruction cells and wait for a!)
pending operations to clser out of the structure controllers and the routing networks. All
reference counts can then be checked agsinst the contents of the input registers of the
instruction cells.

6.0 THE DEADLOCK FROBLEM

The structure controlier and cache module that were described previously were
both required to have s lerge cepacity for state information which would be unnecessary if
one could always be surs that the davice lower in the hisrerchy would sccept » command.

In the cese of the structure controlier, the genersl behavior upon receiving a
result packet from the memory ‘s to perform some transformation on the deta in its state
memory and then send a new command packet. Its internal state memory could be dispensed
with, and the state information placed directly into the tag fields of the packets. When a
result pecket is received from the memory, 8 "memoryless” controller’s functions would then
be simply to perform a transformation on the pecket itself, forring a new packet which is sent
to: ¥ mamnr: The reason this falls is that one cent be sure the memory won't decide to
return scveral rusult packets (perhaps all pending ones) before it accepts eny more command
pachets. Suppose this happened to a memoryless structure controlier. It would have no
place to put the result packets if the memory unit lent accepting any more commands, 0 a
deadiock would yccur. The problem is that the controller has viclated the rule that it must
always be prepared to accept the resuits of oll pending operations. A structure controlier
having stste memory avoids this problem by siways having space to absorb the resuits of all
pending operations.

A similar problem arises in the cache module. 1f a word is not in the cache and
o FET'® packet is received, s coll is immedistely allocated for it end placed in state P. A
FET® packet is aiso sent to main memory to fetch the date. Until the data returns from the
memory, the cell in the cache does not have data in it, s0 it serves no useful purpose. It
might seem to make more sanse to allocate the cache cell only when the first LOAD'#¥ packet
is received from the memory rather than when the first FET{®) packet is raceived from the
user - that is, to bypass state P altogether. Tha problem is that the creation of a cell in the
cache may require writing out the cell’s former contents. If the cell is created in consequence
of the LOAD'® packst coming from memory, the cache may have to send a packet t0 memory
in response to a packet from memory. If the memory sends such LOAD'* packets but does

not accept any replies, the cache would have no place to put the data, so a deadlock would

N =,

[S

AT g 4 g g A Wy g e Py S ma s

= F s bt T e . . by A . . B " ’. B
e R T R L TR Bl AR

108

occur. The cache implementation given in section 3.2 avoids this problem by reserving space
for the LOAD™ packe? in advance. If an UPD packet must S sent tc the memory, it is done
in response to input from the yser rather than from the memory. This way, if the memory
temporarily refuses to accept the UPD, the cache can simply refuse to accept input from its
user.

In both the structure controller and the cache, the cost incurred as a result of
this problem is an amount of memc y equal to all the ‘packoh that can be simultaneously
pending in all lower levels. In the controlier, this is the state information for all concurrently
executing structure operaticns. In the cache, a ceull might be in state P for every
FETA)L0AD) cycle that is pencing st thet instent, Since # call in state P is ussiess, the
cache must be that much larger than it otherwise would be, for a given level of performsnce.

In the case of the structure controlier, the memory space is needed somewhere
in sny cese. If a grest number of memory transactions can be pending simultaneously, a
“rotating” memory, such as was described in saction 4.0, is presumably being used. If »
memoryless structure controlier is used, the state information for pending operations is stored
in the tag fields instead of the controller. But the tags of pen.ig memory operations must be
stored in the trensaction list of the rotating memory, so whatever space was saved in the
controller is used up in the transaction list.

Why, then, would a memorvless structure controller be more desirable? The
reason is that memory space inside the controller is much more expensive than in the
transaction list. The controller must be able to process information as fast as the highest
level of the memory hierarchy. If that highest level is a cache using high speed (and
expensive) devices, the controller must be equally fast. The rotating memory is at the bottom

of the hierarchy, so ils transaction list can use a slower and less expensive logic family.

In order to use & memoryless structure controller or & cache which does not
use "P" celis, the memory systam below the controller or the cache must obey the following
“fixed |atency law"™:

R L A T

Whenever a result packet is transmitted at RESO, the device must accept »
packet st CMDL, If that pecket is an UPD, it must _accopt yet another, until it
hes taken one that is not UPD. It must do this even if the user does not accept
anything further at RESO.

The resson LUFD packets ara a special case is that they do not generate any result, so the
systom should be able to absorb them in unlimited numbers.

Some memory systems obey this law, A random access implementation of MM
clearly does. A rotating implementation can slso, since the transaction list has fixed size.
Whenever an item is tahen out of the TL, sncther can be inserted. (The implementation of the
rotating memory given in section 4.0 did not siways behave this way, but it could esily be
modiiied to do so.)

The systems thet do not obey the fixed latency law ere the horizontal
composition of MM units and the cache. The former inciudes the interconnection network
between the structure controllers and the memory units. In the case of the horizontal
interconnection of units each of which obeys the fixed latency law, when one unit transmits a
result packel, it will accept & new command. That result pechet passes through the arbitrator
snd becomes & resuit of the interconnection, so the interconnection must accept snother
commend. If the command is eddressed i0 a differant MM unit than the one that trensmitted
the resuit, that unit might not be able to accept it. What is naeded is 8 way for the units to
share the burden of pending transactions with sach other,

In the case of the cache, maintaining e constant number of pending transactions
In the cache and memory combined requires maintaining a constant number of pending
transactions in the memory slone. For every resuit packet transmitted by main memory,
another command must go from the cache to main memory. However, such commands only
occur when there are cache misses. If the cache runs into unusually good luck and gets a
continuous string of cache hits, it would not send commands to memory. In order to maintain
constant latency, it wouid have to refuse sny rasuit packets from memory, This could result

in some transactions remaining pending indefinitely. While this probably won't cause a data

s

.

HEE:

E
5

W I e

s iR

- -

107

flow computer to malfunction, it might be an undesirable effect in geners!,

Thess difficulties can probably be overcome through the addition of extre
circuitry to be sure that thers is slways space to handie all pachets. It is not clear whether

the benefits of a memoryless structure controller and a cache without stete “P* justify such
messures.

R,
hnn et o e SN o A e W i B) oo S0 AT -~

L;},,m‘g»ﬂn Crre ‘m’z‘akg

s:;~:

‘z
4

| DG o bt e 2 vt

T N AR
B S Yy

S|

108

7.0 SUGGESTIONS FOR FURTHER RESEARCH

One of the principat problems remsining in the sres of the design of systems
using the pecket communicetion principle is the development of & practicsl and systematic
procedure for constructing modules thot can b proven to mest given functions! specifications.
An importent tool for this tesk is the development of o rigorous and concise Architecture
Description Languags (ADL). With the help of the ADL, the task can be divided into two perts:

(i) Deveiopment oi a prooi methodology 30 thet systems expressed in the ADL
cen be proven to meet functional specifications.

(2) Development of s system constructicn methodoiogy so that systems
exprossed in the ADL cen be constructed with confidence that the physical
device will reslize the ADL expression.

For this purpose, the ADL must be simple enough to correspond nestly to the
herdware devices invoived, bt powsrful snough to msks prosfs invelving history arrays
tractable.

Another remaining problem Is, of courss, to dovobp functional spacificetions for
oil parts of the dete flow computer system, including the structure controlier, and give proots
of their correctness. The functional specification of the computer iteslf (Ihat Is, the structure
contrctier’s user) is needed, among other things, to show that no reference count violations
will occur.

An efficient structure controlier needs to be designed, with specia! attontion to
the needs of programs that are likely to srise.

The deadiock problem needs to be sxamined carefully, to see if it is worthwhile
to build & memoryless structure controlier.

s w s
e 2D mewtt, Gy Y

PN ST S Y

Note 31, Laboratory for Computer Science, MIT, July 1977.

)

i aLy T

Amble, 0, D, E Knuth, Ordered Hach Tables. The Computer Journal 17, (May 1974), pp

i39-iac,

[Ty

3. Andersor, D. W, F. J Sparacio, R. M, Tomasulo. The IBM System/360 Model 91: Machine

7 ! L. Ackermen, W. & Interconnections of Determinate Systems. Computstion Structures Group :
B

]

i

-

g

g

‘ Philosophy and Instruction Handling. 1BM J Res. and Dev. 11, 1 (Jsn. 1967), pp 8-24,

4. Berkeley, E. C, D. G. Bobrow. The Programming Language LISP, its Operastion and

Applications. MIT Press, 1966, ;
¢ ‘ ;
: 8. Boughton, G. A. Routing Networks in Packet Communication Systems. 3. M. Thesis in |
i Preparation. Department oi Electrical Engineering end Computer Science, MIT. 5
€. Dennis, J B, D. P. Misunas. A Preliminary Architecture for a Basic Data Flow Processor.
Computation Structures Group Memo 102, Luboratory for Computer Science, MIT, Aug.
3 1974,
;
: 7. Dennis, J. B, O. P. Misunas, C. K. Leung. A Highly Paraliel Processor Basad on the Dete
? Flow Concep!. Computatio.: Structures Group Memo 134, Laboratory for Computer
; Science, MIT, Jan. 1977.
b
i 8 Dennis, L B. Pascket Communication Architecture. Proceedings af the 1975 Sagamore

Computer Conference on Parallel Processing, IEEE, New York, Aug. 1975.

RS S I

9. Keller, R. M. Look-Ahesd Processors. ACM Comuuting Surveys 7, 4, (Dec. 1973), pp
177-195.

#|
T

110

10. Leung, C. X, Architecture Descrintion Langusge. Computation Structures Group Memo in
preparation, Laboratory for Computer Science, MIT, Aug. 1977.

11. Leung, C. K. Formal Properties of Well-Formed Data Flow Schemas. MAC TM56,
Depariment of Electrical Engineering and Computer Science, MIT, June 19785,

12. Madnick, S. E, & J. Donovan. Operating Systems. McGraw Hill, 1974,

13. McCarthy, J. ot al. LISP 1.5 Programmer's Manual, MIT Press, 1966.

14. Pstil, S. S. Closure Properties of Interconnections of Determinate Systems. Record of
the Project MAC Conference on Concurrent Systems snd Paraliel Computation, ACM, New

York, 1970, pg 107-116.

15. Rumbaugh, L. E. A Paraliel Asynchronous Computer Architecturs for Cata Fiow Programe.
MAC TR150, Department of Electrical Engineering and Computer Science, MIT, May 197%.

16. Thurber, K. L, L. 0. Wald. Associative and Paraliel Processors. ACM Compuling Surveys
7, 4, (Dec. 1978), pp 218-295,

R .
PRI TP

ooeeTacedtad

1

APPENDIX 1
Proof thet the concatenation of two FIFQ buffers is a FIFO buffer, and lengthe are additive.

This proof is given not because the statement is of fundementsi interest, but as an exsmple of

the method of proving theorems about the bahavior of systems, showing acknowledgments in
detell.

Lot & FIFO of size M have input port X and output port Z,
Lot another FIFO of size N have input port Z and output port Y,

and let the ports Z and the acknowledge ports Z, be linked.

X X, Yy,
2,
Z
M N
From the definition of the first FIFQ,
() T =min{K,Z, +1}
@72=X,
(3) Pyl = min { K], 12,0 + M}

From the definition o the second FIFQ,

(A Y =min {{Z), IV, +1)
®Y,~2
8 L =win Y}, Wi+ N}

s P e,
3004 ooremnes 4§ LA Pt 3B SIS RS 71 Sk B

%«
;
|
i
q
5

Casa I: Suppose XIS Yyl + N

By the strong form: ¢! the Stendard Acknowledge Restriction,
othor =R o R+l

10121 = (2} + 1, then -
Bl »itp+ N (trom 6, since [Z,} » iZ)
< (from 1)
S ARY
% [¥pl # N <[], which is a contradiction, 50 we nust have [Z) = |Z,]
2l = i (from 1, since (2} » {2, + 1)
S Meamin{pd,ivie+1}) (from &)
Pl = min { IXI, X+ M) (from 3)
N AR (since M 2 0)
KISVl +MeN ‘by hypothesis and fact that M > 0)

S Kl omin{ X, V)l +M+N)

Case 1i: Suppose [X| > [V,| + N

16{Z) = Z,} , then
1Z] = M| (from 1, since |2} # [Z{ + 1)
L EQARY (from 6)
s M le“hN.chhhnmmtbn.wwmlhmIll-ll‘hl
PARY ARY (from 6, since (2, # 12
BN ARY TY
s Mls1<02 (since N 2 0)
S Meivl+l (from 4)
izl < i (from 1)

S AP RY
o M= min (], Yy o 1)
Myl =min (X, IV 4 M+N} (trom3and 2,0 = IV, + N)

In either case,

""m‘“{‘x'awd‘l}

SRV NP SICTRL IS S - SO WA

13

T

{from 2 and 5)

Pyl = min { K], IV, ¢ M+ N)

Y X

which are the conditions for the interconnection being a FIFO of length M + N.

N

BT g e T A R AR AR

A A P T R A | S A T g

L AP W

Algorithm for the :ache.

Fctusl lookup in (he ceche is not shown. Instead, the special !um;tiom
cache-datal{addr), cache-ref{midr), cacho-stoleliddr), and coche-moaddr) sre 1sed. These
we treated &+ though they were arrayc, and sre sssumed 1o be defined whenever the given
address exit’s in the cache. [n-coche(addh} returns trug if the given address exists in the
cache,

Con-create(eddr), where addr does not exist in the cache, tells whether it cen
be crested, that is, whether some cell in its column is unuses or is in state T.

If can-craste(addr) is true, creation-cali-is-empty(addr) telis whether the
former cess hoide, and, If 20, cache-create{eddr) periorms the insertion into an unused cell.

Otherwise, cofi-to-displece(addr) returns the address of a cell in stats T, selecting the least
recently usad item. Cache-rensme(old, new) performs the replacemint.

' processes stert wt Q, A
input ports CVDY, MEMI

output perts RESO, MEMO
var cmd, item, addr, data, ref, cid-addr, p

ver m init telse | tolis whether to wait for input from MEMI

ver memofisg init trug | trus when lsat pachet sent st MEMO has been acinowledged
var memowait init feise | true when need to send something on MEMO

var wait-pkt | the thing to send

var creste-flag init felse | true when need to creste a new cache cell

var create-pkt | command that led to creation

var new-asddr | address field of create-pkt

3
;
g
1
s
|
g

IR W T

Mgt i P S i o
¢ P ol lh o o i
TR T AR R ¥

115

Q :
wait for acknowledge on port MEMO

take the acknowledge;
memofisg := true;

goto Q

A

until memofiag or packat is available on port MEMI doj

m = fgige; | becomes true if should take packet at MEMI
it memotiag then | Is memory reedy for command?

if some~ce'i-ia-in-state-Q-or-Q" then | ses if need fo send » CLR :
oddr 1= sddress-of-a-cell-in-state-Q-or-Q 4
memofiag := false;
send CLR(addr) on port MEMO)
!Lcm-shh(lddr)-'o,’m Ichorge Qto R, Q' to R°
cache-state(addr) 1= "
ghe !
cacho-stete{addr) = "R * i

else it memowait then | see if need to send FET'* after cresting a cell
memowait := false;
memofiag := faise;
send wait-pkt 9n port MEMO

olse if creste-fiag then | see if trying to create a cell
if can-create(new-addr) then | is some cell in its column emply or in state T?
create-flag := false | yes, will create the cell

if creation-cell-is-empty(new-addr) then
cache-create(new-addr) | old cell empty, just put in new address

else
Qise

116

Old-addr = coli-to-dieplacpinew-eddr) | find coll to displace
if cache-mod(oid-addr) then

memofieg :« faise | write out previous contents if necessery

£and UP((oid-addr, cache-dete{old-eddr), cache-ref(oid-addr)) on port MEMOy
gache-rename(oid-addr, new-addr | create the new cefl

| the new cache celt now exists

{f croate-pkt = UPD(-~,~+,~) then | what command caused the creation?
lot croste-pkt = UPD(-~, date, ref) | UMD, fill in new coll appropristely
cacha-mocnew-eddr) m true; ‘ 3
cache-data(new-addr) 1= date; i

1 cache-ref{now-addr) = ref; ’!?

cache-state(new-addr) 1= "T* j

1 olse | command was FET'®) !
cache-mod(new-addr) = false; ;
cache-state(new-addr) 1= "P%

\"_.j wait-pkt = creste-pht; | queue command for transmission to memery ;

i memowsit = frus ?
glse :

m = trug | con't creste new cache cell, must wait i

e
walt for packet on MEMI or CND, let P = that port ‘
it p = ‘CMOI" then

> T
e PR S g

| #4404+ process packet from CMOI ++444

cmd := RCVPKT(CMOI)
it cmo = FET! X —-) then
let cmd = FET*)(sddr, teg);
it in-cache(addr) then
if cache-stato(eddr) = "P" then

117

memofiag := false; | stete P, just send it onwerd
sand cmd on port MEMD
glse |stateisRor T
it emd » FET*(~~,~) then | need to update refarence count?
coche-ref(addr) 1= cache-ref{addr) + 1;
cathe-mod(eddr) = true;
XMTPKT(RESO) 1= LOAD*(addr, cache-data(eddr), cache-7ef(addr), tag)
elsg if emd » FET (~~~<) then
ceche-ret{addr) :» cache-rel{addr) - 1;
cache-mod(sddr) = true
XMTPKT(RESO) 1= LOAD (addr, c2che-dataleddr), cache-ref(addr), tag)
e
XMTPKT(RESO) 1o LO2{addr, cache-dataladdr), cache-ref(sddr), teg)
gles | state &
now-zdde = addr; | set fiags se coll will be created
croste-pkt :« cmds
creste-flag := trus
glse if crad ® UPD(=~,-~-~) then
@t cmd = UPD(addr, data, ret)k
it incache(eddr) then | must be state Ror 7
cache-date(addr) := date
cache-ref(addr) 1= ref;
coche-mocaddr) := frue
olse | state N
new-addr 1= addr; | set flags s0 cell will be created
cresate-phi :» cmd;

B i o

create-flag := true
oise | must be CLR :
ot cmd = CLR(addr);
if in-ceche(addr) |state P,Ror T
if cacha-state(addr) = "R" then
cache-state(addr) := "R* "

118

gloe if cache-state(adir) = P then
cache-stuteladde) = P ¢

olse Iotate T
XMTPKT{RESO) r» DONE(addr)

tee | stote' N

XMTPKTIRESO) 1= DONE{eckdr)

| 444404+ ond Of CMOL processing +44444

eise
™= trye | packet wes from MEMI

glse
m = {rygs | memofiag wes off, must handle MEMI input

if m then
| #4444 process packet from MEMI ++44

item = RCVPKT(MEMI),
if fiom = LOAD!®X-o - - --) then
lot item = LOAD *X(addr, dats, ref, tegh
if cache-state(eddr) = "P" then | krow it is in cache
coche-dsta(addr) :« date
cache-ref(addr) := ref;
XMTPKT(RESO) 1= itomy
if memofiag then | can send packet at MEMO?
momofleg .» fise; | yos
vend CLR(addr) on port MEMO;
tache stete(addr) := "R"
alse
crche-state(addr) := Q" | no

e Rt B e e P Y

P

119

oige if cache-state{addr) = °P" * then

cache-date{eddr) := dats;

cache-raf(addr) :» ref;

XMTPKT(RESO) := item;

it memofiag then | can send packat at MEMO?
memofieg := felse; | yos
send CLR(sddr) on port MEMO)
coche-state{addr) = "R* *

else
cecho-state(oddr) = Q" * | no

olse | must be state Q, O, R, or R°
if item @ LOAD¥(--,=,--,~) then | update ref and send LOAD
cache-ref(eddr) := cache-ref(addr) + 1;
cache-mod(addr) := true;
XMTPKT(RESO) :» LOAD*(addr, dats, cache-ref(addr), tag)
¢lse if item = LOAD™(~~,~=/=~,--) then
cache-ref(addr) := cache-ref(sddr) - 1;
cache-mod(eddr) 1= true;
XMTPKT(RESO) := LOAD (addr, dets, cache-ref(addr), tag)
sise
YMTPKT(RESO) := LOAD(addr, date, cache-ret(addr), tag)
olse | must be DONE
let item = DONE(addr)
it cache-state(sddr) = "R" then | know it is in cache
cache-state(addr) = "T"
slse | must be state "R* *
cache-state(addr) := "
XMTPKT(RESO) := DONE(addr);

| +4¢++4+ ond of MEMI processing ++++4+

e b, amnsmr iRl WE

O PR PRINEPRE SHITA" IR 1

R ST T AT B4 T g T ey g v n e e e

NP bl # aets

el ™

e

bl ot

121

APPENDIX 111 A
The insertion algorithm for the rotating memory.

fiag = false | becomes true if TL airesdy has UPD packet for this address

P e €20X)» | scan pointer = hash address initially
HRP uTLP and P = RP and | hash addr = start of removal region?
(€e00> # €A(TLTLP)D or ofX) < o{TL(TLP))) then

TUP) 1= X; | insert item ot P
RP := RP + | mod M | shorten the removsl region
pop 1= pop + 1 | update TL population
olse
if RP » TLP sand P « [RP, TLP) then | hash address in removal region
P TLP | advance to end of removal region

| repeat until find empty celi or enter removal region

Ut (P=RPsnd RP # TLP) o TLA(P) mempty or flag = true
(

| see if TL siready has UPD with seme CCD address

i a(X) = o(TL(P)) and TL(P) = UPD(--,--,--) then
flog 1= 1;
olse

if (€(TLPYD = €a(X)D and olX) < HTLP))

or €o(X)» ¢ [€a(TLIPND, P] |is X "smailer” than the current item?

then

ute—

Y = TL(P} | save item ‘rom TL
TUP) = X | insert X here
XY} | insert saved item in next cell

(which pushes sverything past here)

&

AT

D, o st

TS A S e ¢ Ao A 5 A A v

POSPINE V. PR PN A =Y ...x&mﬁ

122

PmP+lmodM |advence P to next cell

| tind out whether to insert X or process it directly

g § it not fleg then | insort it
o HPwRPand P TLP | entered removal region?
then
TU(P) := X3 | insort itom ot P
RP=RP+1modM | shorten the removal region
else
TUP) 1= X | insart item ot P
pop := pop+l | updete TL population

R

olse | process it directly
lot TL(P) = UPD(addr, dsts, ref)
it X = UPD(--,~-~-) then
TUP) 1= X | another UPD, new one replaces oid
olse if X = FET(-~,~-) then

fat ¥ = EET _Oaa).' ; EET mal tha dals

L B] l-!{".! Tty go e

XMTPKT(RESO) :» LOAD(addr, dats, ref, tag)
elss if X = FET*(--,--) then
lot X = FET*(--tagk | FET*, get the data and update ref
TL(P) := UPD(addr, dats, ref+l)
XMTPKT(RESO) := LOAD*(addr, dats, ref+1, teg)
eise if X = FET"(--,--) then
let X = FET (--tagl {FET", got the data and update ref
TU(P) := UPD{addr, data, ref-1)
XMTPKT(RESO) := LOAD (addr, data, ref-1, teg)

|
|
|
i
!
1
|
1
]
{

eise | must be CLR
XMTPKT(RESO) := DONE(addr)

,

TR
w

122

APPENDIX 111 B
The rotating memory aigorithm,

Rrocess stects st A

input ports CMOI, CCOI

output ports RESO, CCDO

var P, X, Z, eddr, data, ref, tag, CCO-addr, pop init 0, TL-cmd,
CCD-data, CCD-ref, CCD-newref, TLP, RP

arrey L size M

A it TU(TLP) = empty then
RP 1= TLF} | destroy the removal region
while TL(TL?) = ¢mply and TLP » €CCD-addrd do
(
TLP := TLP + | mod M | sdvance until catch up to CCD-addr
RP ;= TLP | keep removal region destroysd

| look for input packets

ipop 2M-1
then | TL nearly full, can't take packets at CMD!
1 := RCVPKT(CCO!: | wait for and accept packet at CCDI
let Z = ADDR(CCD-addr, CCD-dats, CCD-ref);
CCO-newref := CCD-rof
else | can accept packet on either port
wait for packet ot CMDI or CCOI, set P := that port | nondeterminate!
if P = CCOI" then
Z 1= RCVPKT(CCDI} | sccept packet at CCDI
lat Z = ADDR(CCD-sddr, CCD-de’ 5, CCD-ref)
CCD-newref := CCO-rof

p slse

1=

8

ERRIR 0 P it o 1 S St Ey S
oA SRR TV g LY
O,

Proroe At o

’ G e e e St E e e
: D R TN, NP AN ST TN S
Wl Rl i 2 Sie
o v Wi Rt
Pt A

1AL

124

X = RCVPKT(CMDI) | take packet st CMDI
R S)

| + insert or otherwise dispose of X
|+ (from sppendix 1i1 A)

| 4440041 HE0 404 44 E5 44444444

| perform all transactions matching CCD-addr

while TL(TLP) » empty and «(TL(TLP)) = OCD-addr do

(

TL-cmd :» TL(TLP) | ramovs transaction from list
TW(TLP) 1= smptly;
pop 1= pop-1; | updats TL populstion
RP :» {o{TL-cmd)d; | shorten removel region sppropristely
TUP o= TLP ¢ | mod W4
TL-emd » CLRICCO-addr) then
XMTPKT(RESO) s DONE(CCD-addr)

alsa it TLcmd = FET(--,~) then

1ob W omed . EETIoaL Ao
T 1NN T E G T NSRS A

XMTPKT(RESO) 1= LOAD(addr, CCO-date, CCO-newref, tag)

aise if TL-cmd = FET*(--,--) then
fet TL-cmd = FET*(sddr, tagh
CCD-rewref :» CCD-newref + 1;
XMTPK F(RESO} := LOAD*(sddr, CCO-data, CCO-newrsf, tag)

olse if TL-cmd = FET™(—--) then
ist TL-cmd = FET (addr, tag);
CCO-newret := CCO-newref - 1;
XMTPKT(RESO) := LOAD (adkdr, CCD-data, CCO-newref, tag)

RN ek e

5 o il winFENA 2 11Ol R fosa s S Al Rerdsinionatdis « R A £ R

%
%
%
2 1
.
¢
L ¥
¥
;,“5
z
_;}
L

A R o

Hx

iss

olze i must be UPD
lo} Ti-cmd = UPD(eddr, dats, ref)
XMTPKT(CCDO) = WRITE(ackdr, dats, ref)

| rewrite reference count if it has changed

it CCO-vet » CCD-nowraf than
XMTPKT(CCDO) :» WRITE(CCD-addr, CCD-dats, CCO-newref);

uote A

Official Distribution List

S E e T S T S R LT T o B P AP SRS Y

Defense Documentation Center New York Area Office

Cameron Station 715 Broadway - 5th floor
: Alexandria, Va 22314 12 copies New York, N. Y. 10003 1 copy
= Office of Naval Research Naval Research Laboratory f
T Information Systems Program Technical Information Division
R Code 437 Code 2627
4 Arlington, Va 22217 2 copies Washington, D. C. 20375 6 copiles
‘% Office of Naval Research Dr. A. L. Slafkosky - ¢
-3 Code 1021P Scientific Advisor i
A4 Arlington, Va 22217 6 copies Commandant of the Marine Corps !
"% (Code RD-1) ‘
Wk Washington, D. C. 20380 1 copy

0ffice of Naval Research f

Code 200
Arlington, Va 22217 1 copy Naval Electronics Laboratory Center
Advanced Software Technology Division
Code 5200
Office of Naval Research San Diego, Ca 92152 1 copy
Code 455
Arlington, Va 22217 1 copy
Mr. E. H. Gleissner
Naval Ship Research & Development Center
Office of Naval Research Computation & Mathematics Department
Code 458 Bethesda, Md 20084 1 copy
Arlington, Va 22217 1 copy
Captain Grace M. Hopper
Office of Naval Research NAICOM/MIS Planning Branch (OP-916D)
Branch Office, Boston Office of Chief of Naval Operations
495 Summer Street Washington, D. C. 20150 1 copy
Boston, Ma 02210 1 copy
Mr. Kin B, Thompson
Office of Naval Research Technical Director
Branch Office, Chicago Information Systems Division (OP-91T)
536 South Clark Street Office of Chief of Naval Operations
Chicago, Il 60605 1 copy Washington, D. C. 20350 1 copy

Office of Naval Research

Branch Office, Pasadena

1030 East Green Street

Pasadena, Ca 91106 1 copy

_(w
F

